Whakaoti mō x
x=-\frac{1}{3}\approx -0.333333333
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-7 ab=6\left(-3\right)=-18
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx-3. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-18 2,-9 3,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -18.
1-18=-17 2-9=-7 3-6=-3
Tātaihia te tapeke mō ia takirua.
a=-9 b=2
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(6x^{2}-9x\right)+\left(2x-3\right)
Tuhia anō te 6x^{2}-7x-3 hei \left(6x^{2}-9x\right)+\left(2x-3\right).
3x\left(2x-3\right)+2x-3
Whakatauwehea atu 3x i te 6x^{2}-9x.
\left(2x-3\right)\left(3x+1\right)
Whakatauwehea atu te kīanga pātahi 2x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{3}{2} x=-\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te 2x-3=0 me te 3x+1=0.
6x^{2}-7x-3=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\left(-3\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -7 mō b, me -3 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6\left(-3\right)}}{2\times 6}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{49-24\left(-3\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-7\right)±\sqrt{49+72}}{2\times 6}
Whakareatia -24 ki te -3.
x=\frac{-\left(-7\right)±\sqrt{121}}{2\times 6}
Tāpiri 49 ki te 72.
x=\frac{-\left(-7\right)±11}{2\times 6}
Tuhia te pūtakerua o te 121.
x=\frac{7±11}{2\times 6}
Ko te tauaro o -7 ko 7.
x=\frac{7±11}{12}
Whakareatia 2 ki te 6.
x=\frac{18}{12}
Nā, me whakaoti te whārite x=\frac{7±11}{12} ina he tāpiri te ±. Tāpiri 7 ki te 11.
x=\frac{3}{2}
Whakahekea te hautanga \frac{18}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{4}{12}
Nā, me whakaoti te whārite x=\frac{7±11}{12} ina he tango te ±. Tango 11 mai i 7.
x=-\frac{1}{3}
Whakahekea te hautanga \frac{-4}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{3}{2} x=-\frac{1}{3}
Kua oti te whārite te whakatau.
6x^{2}-7x-3=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}-7x-3-\left(-3\right)=-\left(-3\right)
Me tāpiri 3 ki ngā taha e rua o te whārite.
6x^{2}-7x=-\left(-3\right)
Mā te tango i te -3 i a ia ake anō ka toe ko te 0.
6x^{2}-7x=3
Tango -3 mai i 0.
\frac{6x^{2}-7x}{6}=\frac{3}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}-\frac{7}{6}x=\frac{3}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{7}{6}x=\frac{1}{2}
Whakahekea te hautanga \frac{3}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}-\frac{7}{6}x+\left(-\frac{7}{12}\right)^{2}=\frac{1}{2}+\left(-\frac{7}{12}\right)^{2}
Whakawehea te -\frac{7}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{7}{12}. Nā, tāpiria te pūrua o te -\frac{7}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{7}{6}x+\frac{49}{144}=\frac{1}{2}+\frac{49}{144}
Pūruatia -\frac{7}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{7}{6}x+\frac{49}{144}=\frac{121}{144}
Tāpiri \frac{1}{2} ki te \frac{49}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{7}{12}\right)^{2}=\frac{121}{144}
Tauwehea te x^{2}-\frac{7}{6}x+\frac{49}{144}. Ko te tikanga, ina ko x^{2}+bx+c he pūrua tika, ka taea te tauwehe i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{7}{12}\right)^{2}}=\sqrt{\frac{121}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{7}{12}=\frac{11}{12} x-\frac{7}{12}=-\frac{11}{12}
Whakarūnātia.
x=\frac{3}{2} x=-\frac{1}{3}
Me tāpiri \frac{7}{12} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}