Tauwehe
\left(2x-1\right)\left(3x-2\right)
Aromātai
\left(2x-1\right)\left(3x-2\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-7 ab=6\times 2=12
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-4 b=-3
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(6x^{2}-4x\right)+\left(-3x+2\right)
Tuhia anō te 6x^{2}-7x+2 hei \left(6x^{2}-4x\right)+\left(-3x+2\right).
2x\left(3x-2\right)-\left(3x-2\right)
Tauwehea te 2x i te tuatahi me te -1 i te rōpū tuarua.
\left(3x-2\right)\left(2x-1\right)
Whakatauwehea atu te kīanga pātahi 3x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
6x^{2}-7x+2=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\times 2}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-7\right)±\sqrt{49-4\times 6\times 2}}{2\times 6}
Pūrua -7.
x=\frac{-\left(-7\right)±\sqrt{49-24\times 2}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-7\right)±\sqrt{49-48}}{2\times 6}
Whakareatia -24 ki te 2.
x=\frac{-\left(-7\right)±\sqrt{1}}{2\times 6}
Tāpiri 49 ki te -48.
x=\frac{-\left(-7\right)±1}{2\times 6}
Tuhia te pūtakerua o te 1.
x=\frac{7±1}{2\times 6}
Ko te tauaro o -7 ko 7.
x=\frac{7±1}{12}
Whakareatia 2 ki te 6.
x=\frac{8}{12}
Nā, me whakaoti te whārite x=\frac{7±1}{12} ina he tāpiri te ±. Tāpiri 7 ki te 1.
x=\frac{2}{3}
Whakahekea te hautanga \frac{8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{6}{12}
Nā, me whakaoti te whārite x=\frac{7±1}{12} ina he tango te ±. Tango 1 mai i 7.
x=\frac{1}{2}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
6x^{2}-7x+2=6\left(x-\frac{2}{3}\right)\left(x-\frac{1}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{2}{3} mō te x_{1} me te \frac{1}{2} mō te x_{2}.
6x^{2}-7x+2=6\times \frac{3x-2}{3}\left(x-\frac{1}{2}\right)
Tango \frac{2}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-7x+2=6\times \frac{3x-2}{3}\times \frac{2x-1}{2}
Tango \frac{1}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-7x+2=6\times \frac{\left(3x-2\right)\left(2x-1\right)}{3\times 2}
Whakareatia \frac{3x-2}{3} ki te \frac{2x-1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-7x+2=6\times \frac{\left(3x-2\right)\left(2x-1\right)}{6}
Whakareatia 3 ki te 2.
6x^{2}-7x+2=\left(3x-2\right)\left(2x-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}