Whakaoti mō x
x=\frac{\sqrt{3}}{6}+\frac{1}{2}\approx 0.788675135
x=-\frac{\sqrt{3}}{6}+\frac{1}{2}\approx 0.211324865
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x^{2}-6x+1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 6}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -6 mō b, me 1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 6}}{2\times 6}
Pūrua -6.
x=\frac{-\left(-6\right)±\sqrt{36-24}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-6\right)±\sqrt{12}}{2\times 6}
Tāpiri 36 ki te -24.
x=\frac{-\left(-6\right)±2\sqrt{3}}{2\times 6}
Tuhia te pūtakerua o te 12.
x=\frac{6±2\sqrt{3}}{2\times 6}
Ko te tauaro o -6 ko 6.
x=\frac{6±2\sqrt{3}}{12}
Whakareatia 2 ki te 6.
x=\frac{2\sqrt{3}+6}{12}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{3}}{12} ina he tāpiri te ±. Tāpiri 6 ki te 2\sqrt{3}.
x=\frac{\sqrt{3}}{6}+\frac{1}{2}
Whakawehe 6+2\sqrt{3} ki te 12.
x=\frac{6-2\sqrt{3}}{12}
Nā, me whakaoti te whārite x=\frac{6±2\sqrt{3}}{12} ina he tango te ±. Tango 2\sqrt{3} mai i 6.
x=-\frac{\sqrt{3}}{6}+\frac{1}{2}
Whakawehe 6-2\sqrt{3} ki te 12.
x=\frac{\sqrt{3}}{6}+\frac{1}{2} x=-\frac{\sqrt{3}}{6}+\frac{1}{2}
Kua oti te whārite te whakatau.
6x^{2}-6x+1=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}-6x+1-1=-1
Me tango 1 mai i ngā taha e rua o te whārite.
6x^{2}-6x=-1
Mā te tango i te 1 i a ia ake anō ka toe ko te 0.
\frac{6x^{2}-6x}{6}=-\frac{1}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\left(-\frac{6}{6}\right)x=-\frac{1}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-x=-\frac{1}{6}
Whakawehe -6 ki te 6.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=-\frac{1}{6}+\left(-\frac{1}{2}\right)^{2}
Whakawehea te -1, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{2}. Nā, tāpiria te pūrua o te -\frac{1}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-x+\frac{1}{4}=-\frac{1}{6}+\frac{1}{4}
Pūruatia -\frac{1}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-x+\frac{1}{4}=\frac{1}{12}
Tāpiri -\frac{1}{6} ki te \frac{1}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{12}
Tauwehea x^{2}-x+\frac{1}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{12}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{2}=\frac{\sqrt{3}}{6} x-\frac{1}{2}=-\frac{\sqrt{3}}{6}
Whakarūnātia.
x=\frac{\sqrt{3}}{6}+\frac{1}{2} x=-\frac{\sqrt{3}}{6}+\frac{1}{2}
Me tāpiri \frac{1}{2} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}