Whakaoti mō x
x=-\frac{2}{3}\approx -0.666666667
x = \frac{3}{2} = 1\frac{1}{2} = 1.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-5 ab=6\left(-6\right)=-36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-36 2,-18 3,-12 4,-9 6,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Tātaihia te tapeke mō ia takirua.
a=-9 b=4
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(6x^{2}-9x\right)+\left(4x-6\right)
Tuhia anō te 6x^{2}-5x-6 hei \left(6x^{2}-9x\right)+\left(4x-6\right).
3x\left(2x-3\right)+2\left(2x-3\right)
Tauwehea te 3x i te tuatahi me te 2 i te rōpū tuarua.
\left(2x-3\right)\left(3x+2\right)
Whakatauwehea atu te kīanga pātahi 2x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{3}{2} x=-\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te 2x-3=0 me te 3x+2=0.
6x^{2}-5x-6=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-6\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -5 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-6\right)}}{2\times 6}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-24\left(-6\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\times 6}
Whakareatia -24 ki te -6.
x=\frac{-\left(-5\right)±\sqrt{169}}{2\times 6}
Tāpiri 25 ki te 144.
x=\frac{-\left(-5\right)±13}{2\times 6}
Tuhia te pūtakerua o te 169.
x=\frac{5±13}{2\times 6}
Ko te tauaro o -5 ko 5.
x=\frac{5±13}{12}
Whakareatia 2 ki te 6.
x=\frac{18}{12}
Nā, me whakaoti te whārite x=\frac{5±13}{12} ina he tāpiri te ±. Tāpiri 5 ki te 13.
x=\frac{3}{2}
Whakahekea te hautanga \frac{18}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{8}{12}
Nā, me whakaoti te whārite x=\frac{5±13}{12} ina he tango te ±. Tango 13 mai i 5.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=\frac{3}{2} x=-\frac{2}{3}
Kua oti te whārite te whakatau.
6x^{2}-5x-6=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}-5x-6-\left(-6\right)=-\left(-6\right)
Me tāpiri 6 ki ngā taha e rua o te whārite.
6x^{2}-5x=-\left(-6\right)
Mā te tango i te -6 i a ia ake anō ka toe ko te 0.
6x^{2}-5x=6
Tango -6 mai i 0.
\frac{6x^{2}-5x}{6}=\frac{6}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}-\frac{5}{6}x=\frac{6}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{5}{6}x=1
Whakawehe 6 ki te 6.
x^{2}-\frac{5}{6}x+\left(-\frac{5}{12}\right)^{2}=1+\left(-\frac{5}{12}\right)^{2}
Whakawehea te -\frac{5}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{5}{12}. Nā, tāpiria te pūrua o te -\frac{5}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{5}{6}x+\frac{25}{144}=1+\frac{25}{144}
Pūruatia -\frac{5}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{5}{6}x+\frac{25}{144}=\frac{169}{144}
Tāpiri 1 ki te \frac{25}{144}.
\left(x-\frac{5}{12}\right)^{2}=\frac{169}{144}
Tauwehea x^{2}-\frac{5}{6}x+\frac{25}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{5}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{5}{12}=\frac{13}{12} x-\frac{5}{12}=-\frac{13}{12}
Whakarūnātia.
x=\frac{3}{2} x=-\frac{2}{3}
Me tāpiri \frac{5}{12} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}