Tauwehe
\left(2x-3\right)\left(3x+2\right)
Aromātai
\left(2x-3\right)\left(3x+2\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-5 ab=6\left(-6\right)=-36
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-36 2,-18 3,-12 4,-9 6,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
1-36=-35 2-18=-16 3-12=-9 4-9=-5 6-6=0
Tātaihia te tapeke mō ia takirua.
a=-9 b=4
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(6x^{2}-9x\right)+\left(4x-6\right)
Tuhia anō te 6x^{2}-5x-6 hei \left(6x^{2}-9x\right)+\left(4x-6\right).
3x\left(2x-3\right)+2\left(2x-3\right)
Tauwehea te 3x i te tuatahi me te 2 i te rōpū tuarua.
\left(2x-3\right)\left(3x+2\right)
Whakatauwehea atu te kīanga pātahi 2x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
6x^{2}-5x-6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-6\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-6\right)}}{2\times 6}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-24\left(-6\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-5\right)±\sqrt{25+144}}{2\times 6}
Whakareatia -24 ki te -6.
x=\frac{-\left(-5\right)±\sqrt{169}}{2\times 6}
Tāpiri 25 ki te 144.
x=\frac{-\left(-5\right)±13}{2\times 6}
Tuhia te pūtakerua o te 169.
x=\frac{5±13}{2\times 6}
Ko te tauaro o -5 ko 5.
x=\frac{5±13}{12}
Whakareatia 2 ki te 6.
x=\frac{18}{12}
Nā, me whakaoti te whārite x=\frac{5±13}{12} ina he tāpiri te ±. Tāpiri 5 ki te 13.
x=\frac{3}{2}
Whakahekea te hautanga \frac{18}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=-\frac{8}{12}
Nā, me whakaoti te whārite x=\frac{5±13}{12} ina he tango te ±. Tango 13 mai i 5.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
6x^{2}-5x-6=6\left(x-\frac{3}{2}\right)\left(x-\left(-\frac{2}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{3}{2} mō te x_{1} me te -\frac{2}{3} mō te x_{2}.
6x^{2}-5x-6=6\left(x-\frac{3}{2}\right)\left(x+\frac{2}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6x^{2}-5x-6=6\times \frac{2x-3}{2}\left(x+\frac{2}{3}\right)
Tango \frac{3}{2} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-5x-6=6\times \frac{2x-3}{2}\times \frac{3x+2}{3}
Tāpiri \frac{2}{3} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-5x-6=6\times \frac{\left(2x-3\right)\left(3x+2\right)}{2\times 3}
Whakareatia \frac{2x-3}{2} ki te \frac{3x+2}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-5x-6=6\times \frac{\left(2x-3\right)\left(3x+2\right)}{6}
Whakareatia 2 ki te 3.
6x^{2}-5x-6=\left(2x-3\right)\left(3x+2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}