Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{2}-5x-5=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-5\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-5\right)}}{2\times 6}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-24\left(-5\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-5\right)±\sqrt{25+120}}{2\times 6}
Whakareatia -24 ki te -5.
x=\frac{-\left(-5\right)±\sqrt{145}}{2\times 6}
Tāpiri 25 ki te 120.
x=\frac{5±\sqrt{145}}{2\times 6}
Ko te tauaro o -5 ko 5.
x=\frac{5±\sqrt{145}}{12}
Whakareatia 2 ki te 6.
x=\frac{\sqrt{145}+5}{12}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{145}}{12} ina he tāpiri te ±. Tāpiri 5 ki te \sqrt{145}.
x=\frac{5-\sqrt{145}}{12}
Nā, me whakaoti te whārite x=\frac{5±\sqrt{145}}{12} ina he tango te ±. Tango \sqrt{145} mai i 5.
6x^{2}-5x-5=6\left(x-\frac{\sqrt{145}+5}{12}\right)\left(x-\frac{5-\sqrt{145}}{12}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5+\sqrt{145}}{12} mō te x_{1} me te \frac{5-\sqrt{145}}{12} mō te x_{2}.