Tauwehe
\left(3x-4\right)\left(2x+1\right)
Aromātai
\left(3x-4\right)\left(2x+1\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=-5 ab=6\left(-4\right)=-24
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6x^{2}+ax+bx-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-24 2,-12 3,-8 4,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -24.
1-24=-23 2-12=-10 3-8=-5 4-6=-2
Tātaihia te tapeke mō ia takirua.
a=-8 b=3
Ko te otinga te takirua ka hoatu i te tapeke -5.
\left(6x^{2}-8x\right)+\left(3x-4\right)
Tuhia anō te 6x^{2}-5x-4 hei \left(6x^{2}-8x\right)+\left(3x-4\right).
2x\left(3x-4\right)+3x-4
Whakatauwehea atu 2x i te 6x^{2}-8x.
\left(3x-4\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi 3x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
6x^{2}-5x-4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 6\left(-4\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 6\left(-4\right)}}{2\times 6}
Pūrua -5.
x=\frac{-\left(-5\right)±\sqrt{25-24\left(-4\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-5\right)±\sqrt{25+96}}{2\times 6}
Whakareatia -24 ki te -4.
x=\frac{-\left(-5\right)±\sqrt{121}}{2\times 6}
Tāpiri 25 ki te 96.
x=\frac{-\left(-5\right)±11}{2\times 6}
Tuhia te pūtakerua o te 121.
x=\frac{5±11}{2\times 6}
Ko te tauaro o -5 ko 5.
x=\frac{5±11}{12}
Whakareatia 2 ki te 6.
x=\frac{16}{12}
Nā, me whakaoti te whārite x=\frac{5±11}{12} ina he tāpiri te ±. Tāpiri 5 ki te 11.
x=\frac{4}{3}
Whakahekea te hautanga \frac{16}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{6}{12}
Nā, me whakaoti te whārite x=\frac{5±11}{12} ina he tango te ±. Tango 11 mai i 5.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
6x^{2}-5x-4=6\left(x-\frac{4}{3}\right)\left(x-\left(-\frac{1}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{4}{3} mō te x_{1} me te -\frac{1}{2} mō te x_{2}.
6x^{2}-5x-4=6\left(x-\frac{4}{3}\right)\left(x+\frac{1}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6x^{2}-5x-4=6\times \frac{3x-4}{3}\left(x+\frac{1}{2}\right)
Tango \frac{4}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-5x-4=6\times \frac{3x-4}{3}\times \frac{2x+1}{2}
Tāpiri \frac{1}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-5x-4=6\times \frac{\left(3x-4\right)\left(2x+1\right)}{3\times 2}
Whakareatia \frac{3x-4}{3} ki te \frac{2x+1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-5x-4=6\times \frac{\left(3x-4\right)\left(2x+1\right)}{6}
Whakareatia 3 ki te 2.
6x^{2}-5x-4=\left(3x-4\right)\left(2x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}