Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

x\left(6x-5\right)
Tauwehea te x.
6x^{2}-5x=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-5\right)±5}{2\times 6}
Tuhia te pūtakerua o te \left(-5\right)^{2}.
x=\frac{5±5}{2\times 6}
Ko te tauaro o -5 ko 5.
x=\frac{5±5}{12}
Whakareatia 2 ki te 6.
x=\frac{10}{12}
Nā, me whakaoti te whārite x=\frac{5±5}{12} ina he tāpiri te ±. Tāpiri 5 ki te 5.
x=\frac{5}{6}
Whakahekea te hautanga \frac{10}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{0}{12}
Nā, me whakaoti te whārite x=\frac{5±5}{12} ina he tango te ±. Tango 5 mai i 5.
x=0
Whakawehe 0 ki te 12.
6x^{2}-5x=6\left(x-\frac{5}{6}\right)x
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5}{6} mō te x_{1} me te 0 mō te x_{2}.
6x^{2}-5x=6\times \frac{6x-5}{6}x
Tango \frac{5}{6} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-5x=\left(6x-5\right)x
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.