Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{2}=46
Me tāpiri te 46 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{46}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}=\frac{23}{3}
Whakahekea te hautanga \frac{46}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=\frac{\sqrt{69}}{3} x=-\frac{\sqrt{69}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
6x^{2}-46=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-46\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 0 mō b, me -46 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-46\right)}}{2\times 6}
Pūrua 0.
x=\frac{0±\sqrt{-24\left(-46\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{0±\sqrt{1104}}{2\times 6}
Whakareatia -24 ki te -46.
x=\frac{0±4\sqrt{69}}{2\times 6}
Tuhia te pūtakerua o te 1104.
x=\frac{0±4\sqrt{69}}{12}
Whakareatia 2 ki te 6.
x=\frac{\sqrt{69}}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{69}}{12} ina he tāpiri te ±.
x=-\frac{\sqrt{69}}{3}
Nā, me whakaoti te whārite x=\frac{0±4\sqrt{69}}{12} ina he tango te ±.
x=\frac{\sqrt{69}}{3} x=-\frac{\sqrt{69}}{3}
Kua oti te whārite te whakatau.