Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(2x^{2}-x-15\right)
Tauwehea te 3.
a+b=-1 ab=2\left(-15\right)=-30
Whakaarohia te 2x^{2}-x-15. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2x^{2}+ax+bx-15. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-30 2,-15 3,-10 5,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Tātaihia te tapeke mō ia takirua.
a=-6 b=5
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(2x^{2}-6x\right)+\left(5x-15\right)
Tuhia anō te 2x^{2}-x-15 hei \left(2x^{2}-6x\right)+\left(5x-15\right).
2x\left(x-3\right)+5\left(x-3\right)
Tauwehea te 2x i te tuatahi me te 5 i te rōpū tuarua.
\left(x-3\right)\left(2x+5\right)
Whakatauwehea atu te kīanga pātahi x-3 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(x-3\right)\left(2x+5\right)
Me tuhi anō te kīanga whakatauwehe katoa.
6x^{2}-3x-45=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\times 6\left(-45\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-3\right)±\sqrt{9-4\times 6\left(-45\right)}}{2\times 6}
Pūrua -3.
x=\frac{-\left(-3\right)±\sqrt{9-24\left(-45\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-3\right)±\sqrt{9+1080}}{2\times 6}
Whakareatia -24 ki te -45.
x=\frac{-\left(-3\right)±\sqrt{1089}}{2\times 6}
Tāpiri 9 ki te 1080.
x=\frac{-\left(-3\right)±33}{2\times 6}
Tuhia te pūtakerua o te 1089.
x=\frac{3±33}{2\times 6}
Ko te tauaro o -3 ko 3.
x=\frac{3±33}{12}
Whakareatia 2 ki te 6.
x=\frac{36}{12}
Nā, me whakaoti te whārite x=\frac{3±33}{12} ina he tāpiri te ±. Tāpiri 3 ki te 33.
x=3
Whakawehe 36 ki te 12.
x=-\frac{30}{12}
Nā, me whakaoti te whārite x=\frac{3±33}{12} ina he tango te ±. Tango 33 mai i 3.
x=-\frac{5}{2}
Whakahekea te hautanga \frac{-30}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
6x^{2}-3x-45=6\left(x-3\right)\left(x-\left(-\frac{5}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 3 mō te x_{1} me te -\frac{5}{2} mō te x_{2}.
6x^{2}-3x-45=6\left(x-3\right)\left(x+\frac{5}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6x^{2}-3x-45=6\left(x-3\right)\times \frac{2x+5}{2}
Tāpiri \frac{5}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-3x-45=3\left(x-3\right)\left(2x+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 6 me te 2.