Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=-25 ab=6\times 4=24
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6x^{2}+ax+bx+4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-24 -2,-12 -3,-8 -4,-6
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 24.
-1-24=-25 -2-12=-14 -3-8=-11 -4-6=-10
Tātaihia te tapeke mō ia takirua.
a=-24 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -25.
\left(6x^{2}-24x\right)+\left(-x+4\right)
Tuhia anō te 6x^{2}-25x+4 hei \left(6x^{2}-24x\right)+\left(-x+4\right).
6x\left(x-4\right)-\left(x-4\right)
Tauwehea te 6x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-4\right)\left(6x-1\right)
Whakatauwehea atu te kīanga pātahi x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
6x^{2}-25x+4=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-25\right)±\sqrt{\left(-25\right)^{2}-4\times 6\times 4}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-25\right)±\sqrt{625-4\times 6\times 4}}{2\times 6}
Pūrua -25.
x=\frac{-\left(-25\right)±\sqrt{625-24\times 4}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-25\right)±\sqrt{625-96}}{2\times 6}
Whakareatia -24 ki te 4.
x=\frac{-\left(-25\right)±\sqrt{529}}{2\times 6}
Tāpiri 625 ki te -96.
x=\frac{-\left(-25\right)±23}{2\times 6}
Tuhia te pūtakerua o te 529.
x=\frac{25±23}{2\times 6}
Ko te tauaro o -25 ko 25.
x=\frac{25±23}{12}
Whakareatia 2 ki te 6.
x=\frac{48}{12}
Nā, me whakaoti te whārite x=\frac{25±23}{12} ina he tāpiri te ±. Tāpiri 25 ki te 23.
x=4
Whakawehe 48 ki te 12.
x=\frac{2}{12}
Nā, me whakaoti te whārite x=\frac{25±23}{12} ina he tango te ±. Tango 23 mai i 25.
x=\frac{1}{6}
Whakahekea te hautanga \frac{2}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
6x^{2}-25x+4=6\left(x-4\right)\left(x-\frac{1}{6}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 4 mō te x_{1} me te \frac{1}{6} mō te x_{2}.
6x^{2}-25x+4=6\left(x-4\right)\times \frac{6x-1}{6}
Tango \frac{1}{6} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}-25x+4=\left(x-4\right)\left(6x-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.