Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{2}-2x-6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 6\left(-6\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 6\left(-6\right)}}{2\times 6}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4-24\left(-6\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-2\right)±\sqrt{4+144}}{2\times 6}
Whakareatia -24 ki te -6.
x=\frac{-\left(-2\right)±\sqrt{148}}{2\times 6}
Tāpiri 4 ki te 144.
x=\frac{-\left(-2\right)±2\sqrt{37}}{2\times 6}
Tuhia te pūtakerua o te 148.
x=\frac{2±2\sqrt{37}}{2\times 6}
Ko te tauaro o -2 ko 2.
x=\frac{2±2\sqrt{37}}{12}
Whakareatia 2 ki te 6.
x=\frac{2\sqrt{37}+2}{12}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{37}}{12} ina he tāpiri te ±. Tāpiri 2 ki te 2\sqrt{37}.
x=\frac{\sqrt{37}+1}{6}
Whakawehe 2+2\sqrt{37} ki te 12.
x=\frac{2-2\sqrt{37}}{12}
Nā, me whakaoti te whārite x=\frac{2±2\sqrt{37}}{12} ina he tango te ±. Tango 2\sqrt{37} mai i 2.
x=\frac{1-\sqrt{37}}{6}
Whakawehe 2-2\sqrt{37} ki te 12.
6x^{2}-2x-6=6\left(x-\frac{\sqrt{37}+1}{6}\right)\left(x-\frac{1-\sqrt{37}}{6}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1+\sqrt{37}}{6} mō te x_{1} me te \frac{1-\sqrt{37}}{6} mō te x_{2}.