Whakaoti mō x
x=-\frac{2}{3}\approx -0.666666667
x=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
3x^{2}-x-2=0
Whakawehea ngā taha e rua ki te 2.
a+b=-1 ab=3\left(-2\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 3x^{2}+ax+bx-2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-6 2,-3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
1-6=-5 2-3=-1
Tātaihia te tapeke mō ia takirua.
a=-3 b=2
Ko te otinga te takirua ka hoatu i te tapeke -1.
\left(3x^{2}-3x\right)+\left(2x-2\right)
Tuhia anō te 3x^{2}-x-2 hei \left(3x^{2}-3x\right)+\left(2x-2\right).
3x\left(x-1\right)+2\left(x-1\right)
Tauwehea te 3x i te tuatahi me te 2 i te rōpū tuarua.
\left(x-1\right)\left(3x+2\right)
Whakatauwehea atu te kīanga pātahi x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=1 x=-\frac{2}{3}
Hei kimi otinga whārite, me whakaoti te x-1=0 me te 3x+2=0.
6x^{2}-2x-4=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 6\left(-4\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -2 mō b, me -4 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-2\right)±\sqrt{4-4\times 6\left(-4\right)}}{2\times 6}
Pūrua -2.
x=\frac{-\left(-2\right)±\sqrt{4-24\left(-4\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-2\right)±\sqrt{4+96}}{2\times 6}
Whakareatia -24 ki te -4.
x=\frac{-\left(-2\right)±\sqrt{100}}{2\times 6}
Tāpiri 4 ki te 96.
x=\frac{-\left(-2\right)±10}{2\times 6}
Tuhia te pūtakerua o te 100.
x=\frac{2±10}{2\times 6}
Ko te tauaro o -2 ko 2.
x=\frac{2±10}{12}
Whakareatia 2 ki te 6.
x=\frac{12}{12}
Nā, me whakaoti te whārite x=\frac{2±10}{12} ina he tāpiri te ±. Tāpiri 2 ki te 10.
x=1
Whakawehe 12 ki te 12.
x=-\frac{8}{12}
Nā, me whakaoti te whārite x=\frac{2±10}{12} ina he tango te ±. Tango 10 mai i 2.
x=-\frac{2}{3}
Whakahekea te hautanga \frac{-8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=1 x=-\frac{2}{3}
Kua oti te whārite te whakatau.
6x^{2}-2x-4=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}-2x-4-\left(-4\right)=-\left(-4\right)
Me tāpiri 4 ki ngā taha e rua o te whārite.
6x^{2}-2x=-\left(-4\right)
Mā te tango i te -4 i a ia ake anō ka toe ko te 0.
6x^{2}-2x=4
Tango -4 mai i 0.
\frac{6x^{2}-2x}{6}=\frac{4}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\left(-\frac{2}{6}\right)x=\frac{4}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{1}{3}x=\frac{4}{6}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{3}x=\frac{2}{3}
Whakahekea te hautanga \frac{4}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{3}x+\left(-\frac{1}{6}\right)^{2}=\frac{2}{3}+\left(-\frac{1}{6}\right)^{2}
Whakawehea te -\frac{1}{3}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{6}. Nā, tāpiria te pūrua o te -\frac{1}{6} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{2}{3}+\frac{1}{36}
Pūruatia -\frac{1}{6} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{3}x+\frac{1}{36}=\frac{25}{36}
Tāpiri \frac{2}{3} ki te \frac{1}{36} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{6}\right)^{2}=\frac{25}{36}
Tauwehea x^{2}-\frac{1}{3}x+\frac{1}{36}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{6}\right)^{2}}=\sqrt{\frac{25}{36}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{6}=\frac{5}{6} x-\frac{1}{6}=-\frac{5}{6}
Whakarūnātia.
x=1 x=-\frac{2}{3}
Me tāpiri \frac{1}{6} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}