Whakaoti mō x
x=\frac{1}{6}\approx 0.166666667
x=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x^{2}-13x+4=2
Tangohia te 2 i te 4, ka 2.
6x^{2}-13x+4-2=0
Tangohia te 2 mai i ngā taha e rua.
6x^{2}-13x+2=0
Tangohia te 2 i te 4, ka 2.
a+b=-13 ab=6\times 2=12
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx+2. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-12 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(6x^{2}-12x\right)+\left(-x+2\right)
Tuhia anō te 6x^{2}-13x+2 hei \left(6x^{2}-12x\right)+\left(-x+2\right).
6x\left(x-2\right)-\left(x-2\right)
Tauwehea te 6x i te tuatahi me te -1 i te rōpū tuarua.
\left(x-2\right)\left(6x-1\right)
Whakatauwehea atu te kīanga pātahi x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=2 x=\frac{1}{6}
Hei kimi otinga whārite, me whakaoti te x-2=0 me te 6x-1=0.
6x^{2}-13x+4=2
Tangohia te 2 i te 4, ka 2.
6x^{2}-13x+4-2=0
Tangohia te 2 mai i ngā taha e rua.
6x^{2}-13x+2=0
Tangohia te 2 i te 4, ka 2.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\times 2}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -13 mō b, me 2 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 6\times 2}}{2\times 6}
Pūrua -13.
x=\frac{-\left(-13\right)±\sqrt{169-24\times 2}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-13\right)±\sqrt{169-48}}{2\times 6}
Whakareatia -24 ki te 2.
x=\frac{-\left(-13\right)±\sqrt{121}}{2\times 6}
Tāpiri 169 ki te -48.
x=\frac{-\left(-13\right)±11}{2\times 6}
Tuhia te pūtakerua o te 121.
x=\frac{13±11}{2\times 6}
Ko te tauaro o -13 ko 13.
x=\frac{13±11}{12}
Whakareatia 2 ki te 6.
x=\frac{24}{12}
Nā, me whakaoti te whārite x=\frac{13±11}{12} ina he tāpiri te ±. Tāpiri 13 ki te 11.
x=2
Whakawehe 24 ki te 12.
x=\frac{2}{12}
Nā, me whakaoti te whārite x=\frac{13±11}{12} ina he tango te ±. Tango 11 mai i 13.
x=\frac{1}{6}
Whakahekea te hautanga \frac{2}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=2 x=\frac{1}{6}
Kua oti te whārite te whakatau.
6x^{2}-13x+4=2
Tangohia te 2 i te 4, ka 2.
6x^{2}-13x=2-4
Tangohia te 4 mai i ngā taha e rua.
6x^{2}-13x=-2
Tangohia te 4 i te 2, ka -2.
\frac{6x^{2}-13x}{6}=-\frac{2}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}-\frac{13}{6}x=-\frac{2}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{13}{6}x=-\frac{1}{3}
Whakahekea te hautanga \frac{-2}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{13}{6}x+\left(-\frac{13}{12}\right)^{2}=-\frac{1}{3}+\left(-\frac{13}{12}\right)^{2}
Whakawehea te -\frac{13}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{12}. Nā, tāpiria te pūrua o te -\frac{13}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{13}{6}x+\frac{169}{144}=-\frac{1}{3}+\frac{169}{144}
Pūruatia -\frac{13}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{13}{6}x+\frac{169}{144}=\frac{121}{144}
Tāpiri -\frac{1}{3} ki te \frac{169}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{13}{12}\right)^{2}=\frac{121}{144}
Tauwehea x^{2}-\frac{13}{6}x+\frac{169}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{13}{12}\right)^{2}}=\sqrt{\frac{121}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{13}{12}=\frac{11}{12} x-\frac{13}{12}=-\frac{11}{12}
Whakarūnātia.
x=2 x=\frac{1}{6}
Me tāpiri \frac{13}{12} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}