Whakaoti mō x
x=-5
x=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
x^{2}-2x-35=0
Whakawehea ngā taha e rua ki te 6.
a+b=-2 ab=1\left(-35\right)=-35
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei x^{2}+ax+bx-35. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-35 5,-7
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -35.
1-35=-34 5-7=-2
Tātaihia te tapeke mō ia takirua.
a=-7 b=5
Ko te otinga te takirua ka hoatu i te tapeke -2.
\left(x^{2}-7x\right)+\left(5x-35\right)
Tuhia anō te x^{2}-2x-35 hei \left(x^{2}-7x\right)+\left(5x-35\right).
x\left(x-7\right)+5\left(x-7\right)
Tauwehea te x i te tuatahi me te 5 i te rōpū tuarua.
\left(x-7\right)\left(x+5\right)
Whakatauwehea atu te kīanga pātahi x-7 mā te whakamahi i te āhuatanga tātai tohatoha.
x=7 x=-5
Hei kimi otinga whārite, me whakaoti te x-7=0 me te x+5=0.
6x^{2}-12x-210=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 6\left(-210\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -12 mō b, me -210 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 6\left(-210\right)}}{2\times 6}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-24\left(-210\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-12\right)±\sqrt{144+5040}}{2\times 6}
Whakareatia -24 ki te -210.
x=\frac{-\left(-12\right)±\sqrt{5184}}{2\times 6}
Tāpiri 144 ki te 5040.
x=\frac{-\left(-12\right)±72}{2\times 6}
Tuhia te pūtakerua o te 5184.
x=\frac{12±72}{2\times 6}
Ko te tauaro o -12 ko 12.
x=\frac{12±72}{12}
Whakareatia 2 ki te 6.
x=\frac{84}{12}
Nā, me whakaoti te whārite x=\frac{12±72}{12} ina he tāpiri te ±. Tāpiri 12 ki te 72.
x=7
Whakawehe 84 ki te 12.
x=-\frac{60}{12}
Nā, me whakaoti te whārite x=\frac{12±72}{12} ina he tango te ±. Tango 72 mai i 12.
x=-5
Whakawehe -60 ki te 12.
x=7 x=-5
Kua oti te whārite te whakatau.
6x^{2}-12x-210=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}-12x-210-\left(-210\right)=-\left(-210\right)
Me tāpiri 210 ki ngā taha e rua o te whārite.
6x^{2}-12x=-\left(-210\right)
Mā te tango i te -210 i a ia ake anō ka toe ko te 0.
6x^{2}-12x=210
Tango -210 mai i 0.
\frac{6x^{2}-12x}{6}=\frac{210}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\left(-\frac{12}{6}\right)x=\frac{210}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-2x=\frac{210}{6}
Whakawehe -12 ki te 6.
x^{2}-2x=35
Whakawehe 210 ki te 6.
x^{2}-2x+1=35+1
Whakawehea te -2, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -1. Nā, tāpiria te pūrua o te -1 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-2x+1=36
Tāpiri 35 ki te 1.
\left(x-1\right)^{2}=36
Tauwehea x^{2}-2x+1. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{36}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-1=6 x-1=-6
Whakarūnātia.
x=7 x=-5
Me tāpiri 1 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}