Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6\left(x^{2}-2x+1\right)
Tauwehea te 6.
\left(x-1\right)^{2}
Whakaarohia te x^{2}-2x+1. Whakamahia te tikanga tātai pūrua pā, a^{2}-2ab+b^{2}=\left(a-b\right)^{2}, ina a=x, ina b=1.
6\left(x-1\right)^{2}
Me tuhi anō te kīanga whakatauwehe katoa.
factor(6x^{2}-12x+6)
Ko te tikanga tātai o tēnei huatoru he pūrua huatoru, ka whakareatia pea e tētahi tauwehe pātahi. Ka taea ngā pūrua huatoru te tauwehe mā te kimi i ngā pūtakerua o ngā kīanga tau ārahi, autō hoki.
gcf(6,-12,6)=6
Kimihia te tauwehe pātahi nui rawa o ngā tau whakarea.
6\left(x^{2}-2x+1\right)
Tauwehea te 6.
6\left(x-1\right)^{2}
Ko te pūrua huatoru te pūrua o te huarua ko te tapeke tērā, te huatango rānei o ngā pūtakerua o ngā kīanga tau ārahi, autō hoki, e whakaritea ai te tohu e te tohu o te kīanga tau waenga o te pūrua huatoru.
6x^{2}-12x+6=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 6\times 6}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\left(-12\right)±\sqrt{144-4\times 6\times 6}}{2\times 6}
Pūrua -12.
x=\frac{-\left(-12\right)±\sqrt{144-24\times 6}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-12\right)±\sqrt{144-144}}{2\times 6}
Whakareatia -24 ki te 6.
x=\frac{-\left(-12\right)±\sqrt{0}}{2\times 6}
Tāpiri 144 ki te -144.
x=\frac{-\left(-12\right)±0}{2\times 6}
Tuhia te pūtakerua o te 0.
x=\frac{12±0}{2\times 6}
Ko te tauaro o -12 ko 12.
x=\frac{12±0}{12}
Whakareatia 2 ki te 6.
6x^{2}-12x+6=6\left(x-1\right)\left(x-1\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 1 mō te x_{1} me te 1 mō te x_{2}.