Whakaoti mō x
x=\frac{1}{4}=0.25
x=-\frac{1}{4}=-0.25
Graph
Tohaina
Kua tāruatia ki te papatopenga
16x^{2}-1=0
Whakawehea ngā taha e rua ki te \frac{3}{8}.
\left(4x-1\right)\left(4x+1\right)=0
Whakaarohia te 16x^{2}-1. Tuhia anō te 16x^{2}-1 hei \left(4x\right)^{2}-1^{2}. Ka taea te rerekētanga o ngā pūrua te whakatauwehe mā te ture: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=\frac{1}{4} x=-\frac{1}{4}
Hei kimi otinga whārite, me whakaoti te 4x-1=0 me te 4x+1=0.
6x^{2}=\frac{3}{8}
Me tāpiri te \frac{3}{8} ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
x^{2}=\frac{\frac{3}{8}}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}=\frac{3}{8\times 6}
Tuhia te \frac{\frac{3}{8}}{6} hei hautanga kotahi.
x^{2}=\frac{3}{48}
Whakareatia te 8 ki te 6, ka 48.
x^{2}=\frac{1}{16}
Whakahekea te hautanga \frac{3}{48} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x=\frac{1}{4} x=-\frac{1}{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
6x^{2}-\frac{3}{8}=0
Ko ngā tikanga tātai pūrua pēnei i tēnei nā, me te kīanga tau x^{2} engari kāore he kīanga tau x, ka taea tonu te whakaoti mā te whakamahi i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, ina tuhia ki te tānga ngahuru: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-\frac{3}{8}\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 0 mō b, me -\frac{3}{8} mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-\frac{3}{8}\right)}}{2\times 6}
Pūrua 0.
x=\frac{0±\sqrt{-24\left(-\frac{3}{8}\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{0±\sqrt{9}}{2\times 6}
Whakareatia -24 ki te -\frac{3}{8}.
x=\frac{0±3}{2\times 6}
Tuhia te pūtakerua o te 9.
x=\frac{0±3}{12}
Whakareatia 2 ki te 6.
x=\frac{1}{4}
Nā, me whakaoti te whārite x=\frac{0±3}{12} ina he tāpiri te ±. Whakahekea te hautanga \frac{3}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x=-\frac{1}{4}
Nā, me whakaoti te whārite x=\frac{0±3}{12} ina he tango te ±. Whakahekea te hautanga \frac{-3}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x=\frac{1}{4} x=-\frac{1}{4}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}