Whakaoti mō x
x = \frac{\sqrt{673} + 1}{12} \approx 2.245186962
x=\frac{1-\sqrt{673}}{12}\approx -2.078520295
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x^{2}-x=28
Tangohia te x mai i ngā taha e rua.
6x^{2}-x-28=0
Tangohia te 28 mai i ngā taha e rua.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-28\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -1 mō b, me -28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-28\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\left(-1\right)±\sqrt{1+672}}{2\times 6}
Whakareatia -24 ki te -28.
x=\frac{-\left(-1\right)±\sqrt{673}}{2\times 6}
Tāpiri 1 ki te 672.
x=\frac{1±\sqrt{673}}{2\times 6}
Ko te tauaro o -1 ko 1.
x=\frac{1±\sqrt{673}}{12}
Whakareatia 2 ki te 6.
x=\frac{\sqrt{673}+1}{12}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{673}}{12} ina he tāpiri te ±. Tāpiri 1 ki te \sqrt{673}.
x=\frac{1-\sqrt{673}}{12}
Nā, me whakaoti te whārite x=\frac{1±\sqrt{673}}{12} ina he tango te ±. Tango \sqrt{673} mai i 1.
x=\frac{\sqrt{673}+1}{12} x=\frac{1-\sqrt{673}}{12}
Kua oti te whārite te whakatau.
6x^{2}-x=28
Tangohia te x mai i ngā taha e rua.
\frac{6x^{2}-x}{6}=\frac{28}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}-\frac{1}{6}x=\frac{28}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}-\frac{1}{6}x=\frac{14}{3}
Whakahekea te hautanga \frac{28}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{14}{3}+\left(-\frac{1}{12}\right)^{2}
Whakawehea te -\frac{1}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{1}{12}. Nā, tāpiria te pūrua o te -\frac{1}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{14}{3}+\frac{1}{144}
Pūruatia -\frac{1}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{673}{144}
Tāpiri \frac{14}{3} ki te \frac{1}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x-\frac{1}{12}\right)^{2}=\frac{673}{144}
Tauwehea x^{2}-\frac{1}{6}x+\frac{1}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{673}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-\frac{1}{12}=\frac{\sqrt{673}}{12} x-\frac{1}{12}=-\frac{\sqrt{673}}{12}
Whakarūnātia.
x=\frac{\sqrt{673}+1}{12} x=\frac{1-\sqrt{673}}{12}
Me tāpiri \frac{1}{12} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}