Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{2}-1=-x
Tangohia te 1 mai i ngā taha e rua.
6x^{2}-1+x=0
Me tāpiri te x ki ngā taha e rua.
6x^{2}+x-1=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=1 ab=6\left(-1\right)=-6
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=-2 b=3
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(6x^{2}-2x\right)+\left(3x-1\right)
Tuhia anō te 6x^{2}+x-1 hei \left(6x^{2}-2x\right)+\left(3x-1\right).
2x\left(3x-1\right)+3x-1
Whakatauwehea atu 2x i te 6x^{2}-2x.
\left(3x-1\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi 3x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{1}{3} x=-\frac{1}{2}
Hei kimi otinga whārite, me whakaoti te 3x-1=0 me te 2x+1=0.
6x^{2}-1=-x
Tangohia te 1 mai i ngā taha e rua.
6x^{2}-1+x=0
Me tāpiri te x ki ngā taha e rua.
6x^{2}+x-1=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-1\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 1 mō b, me -1 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-1±\sqrt{1-4\times 6\left(-1\right)}}{2\times 6}
Pūrua 1.
x=\frac{-1±\sqrt{1-24\left(-1\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-1±\sqrt{1+24}}{2\times 6}
Whakareatia -24 ki te -1.
x=\frac{-1±\sqrt{25}}{2\times 6}
Tāpiri 1 ki te 24.
x=\frac{-1±5}{2\times 6}
Tuhia te pūtakerua o te 25.
x=\frac{-1±5}{12}
Whakareatia 2 ki te 6.
x=\frac{4}{12}
Nā, me whakaoti te whārite x=\frac{-1±5}{12} ina he tāpiri te ±. Tāpiri -1 ki te 5.
x=\frac{1}{3}
Whakahekea te hautanga \frac{4}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{6}{12}
Nā, me whakaoti te whārite x=\frac{-1±5}{12} ina he tango te ±. Tango 5 mai i -1.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{1}{3} x=-\frac{1}{2}
Kua oti te whārite te whakatau.
6x^{2}+x=1
Me tāpiri te x ki ngā taha e rua.
\frac{6x^{2}+x}{6}=\frac{1}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{1}{6}x=\frac{1}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+\frac{1}{6}x+\left(\frac{1}{12}\right)^{2}=\frac{1}{6}+\left(\frac{1}{12}\right)^{2}
Whakawehea te \frac{1}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{1}{12}. Nā, tāpiria te pūrua o te \frac{1}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{1}{6}+\frac{1}{144}
Pūruatia \frac{1}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{1}{6}x+\frac{1}{144}=\frac{25}{144}
Tāpiri \frac{1}{6} ki te \frac{1}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{1}{12}\right)^{2}=\frac{25}{144}
Tauwehea x^{2}+\frac{1}{6}x+\frac{1}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{1}{12}\right)^{2}}=\sqrt{\frac{25}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{1}{12}=\frac{5}{12} x+\frac{1}{12}=-\frac{5}{12}
Whakarūnātia.
x=\frac{1}{3} x=-\frac{1}{2}
Me tango \frac{1}{12} mai i ngā taha e rua o te whārite.