Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=1 ab=6\left(-1\right)=-6
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6x^{2}+ax+bx-1. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,6 -2,3
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -6.
-1+6=5 -2+3=1
Tātaihia te tapeke mō ia takirua.
a=-2 b=3
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(6x^{2}-2x\right)+\left(3x-1\right)
Tuhia anō te 6x^{2}+x-1 hei \left(6x^{2}-2x\right)+\left(3x-1\right).
2x\left(3x-1\right)+3x-1
Whakatauwehea atu 2x i te 6x^{2}-2x.
\left(3x-1\right)\left(2x+1\right)
Whakatauwehea atu te kīanga pātahi 3x-1 mā te whakamahi i te āhuatanga tātai tohatoha.
6x^{2}+x-1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-1±\sqrt{1^{2}-4\times 6\left(-1\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-1±\sqrt{1-4\times 6\left(-1\right)}}{2\times 6}
Pūrua 1.
x=\frac{-1±\sqrt{1-24\left(-1\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-1±\sqrt{1+24}}{2\times 6}
Whakareatia -24 ki te -1.
x=\frac{-1±\sqrt{25}}{2\times 6}
Tāpiri 1 ki te 24.
x=\frac{-1±5}{2\times 6}
Tuhia te pūtakerua o te 25.
x=\frac{-1±5}{12}
Whakareatia 2 ki te 6.
x=\frac{4}{12}
Nā, me whakaoti te whārite x=\frac{-1±5}{12} ina he tāpiri te ±. Tāpiri -1 ki te 5.
x=\frac{1}{3}
Whakahekea te hautanga \frac{4}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{6}{12}
Nā, me whakaoti te whārite x=\frac{-1±5}{12} ina he tango te ±. Tango 5 mai i -1.
x=-\frac{1}{2}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
6x^{2}+x-1=6\left(x-\frac{1}{3}\right)\left(x-\left(-\frac{1}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{1}{3} mō te x_{1} me te -\frac{1}{2} mō te x_{2}.
6x^{2}+x-1=6\left(x-\frac{1}{3}\right)\left(x+\frac{1}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6x^{2}+x-1=6\times \frac{3x-1}{3}\left(x+\frac{1}{2}\right)
Tango \frac{1}{3} mai i x mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}+x-1=6\times \frac{3x-1}{3}\times \frac{2x+1}{2}
Tāpiri \frac{1}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}+x-1=6\times \frac{\left(3x-1\right)\left(2x+1\right)}{3\times 2}
Whakareatia \frac{3x-1}{3} ki te \frac{2x+1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}+x-1=6\times \frac{\left(3x-1\right)\left(2x+1\right)}{6}
Whakareatia 3 ki te 2.
6x^{2}+x-1=\left(3x-1\right)\left(2x+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.