Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{2}+8x+1=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-8±\sqrt{8^{2}-4\times 6}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-8±\sqrt{64-4\times 6}}{2\times 6}
Pūrua 8.
x=\frac{-8±\sqrt{64-24}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-8±\sqrt{40}}{2\times 6}
Tāpiri 64 ki te -24.
x=\frac{-8±2\sqrt{10}}{2\times 6}
Tuhia te pūtakerua o te 40.
x=\frac{-8±2\sqrt{10}}{12}
Whakareatia 2 ki te 6.
x=\frac{2\sqrt{10}-8}{12}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{10}}{12} ina he tāpiri te ±. Tāpiri -8 ki te 2\sqrt{10}.
x=\frac{\sqrt{10}}{6}-\frac{2}{3}
Whakawehe -8+2\sqrt{10} ki te 12.
x=\frac{-2\sqrt{10}-8}{12}
Nā, me whakaoti te whārite x=\frac{-8±2\sqrt{10}}{12} ina he tango te ±. Tango 2\sqrt{10} mai i -8.
x=-\frac{\sqrt{10}}{6}-\frac{2}{3}
Whakawehe -8-2\sqrt{10} ki te 12.
6x^{2}+8x+1=6\left(x-\left(\frac{\sqrt{10}}{6}-\frac{2}{3}\right)\right)\left(x-\left(-\frac{\sqrt{10}}{6}-\frac{2}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{2}{3}+\frac{\sqrt{10}}{6} mō te x_{1} me te -\frac{2}{3}-\frac{\sqrt{10}}{6} mō te x_{2}.