Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=7 ab=6\left(-20\right)=-120
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx-20. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,120 -2,60 -3,40 -4,30 -5,24 -6,20 -8,15 -10,12
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -120.
-1+120=119 -2+60=58 -3+40=37 -4+30=26 -5+24=19 -6+20=14 -8+15=7 -10+12=2
Tātaihia te tapeke mō ia takirua.
a=-8 b=15
Ko te otinga te takirua ka hoatu i te tapeke 7.
\left(6x^{2}-8x\right)+\left(15x-20\right)
Tuhia anō te 6x^{2}+7x-20 hei \left(6x^{2}-8x\right)+\left(15x-20\right).
2x\left(3x-4\right)+5\left(3x-4\right)
Tauwehea te 2x i te tuatahi me te 5 i te rōpū tuarua.
\left(3x-4\right)\left(2x+5\right)
Whakatauwehea atu te kīanga pātahi 3x-4 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{4}{3} x=-\frac{5}{2}
Hei kimi otinga whārite, me whakaoti te 3x-4=0 me te 2x+5=0.
6x^{2}+7x-20=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-7±\sqrt{7^{2}-4\times 6\left(-20\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 7 mō b, me -20 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-7±\sqrt{49-4\times 6\left(-20\right)}}{2\times 6}
Pūrua 7.
x=\frac{-7±\sqrt{49-24\left(-20\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-7±\sqrt{49+480}}{2\times 6}
Whakareatia -24 ki te -20.
x=\frac{-7±\sqrt{529}}{2\times 6}
Tāpiri 49 ki te 480.
x=\frac{-7±23}{2\times 6}
Tuhia te pūtakerua o te 529.
x=\frac{-7±23}{12}
Whakareatia 2 ki te 6.
x=\frac{16}{12}
Nā, me whakaoti te whārite x=\frac{-7±23}{12} ina he tāpiri te ±. Tāpiri -7 ki te 23.
x=\frac{4}{3}
Whakahekea te hautanga \frac{16}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{30}{12}
Nā, me whakaoti te whārite x=\frac{-7±23}{12} ina he tango te ±. Tango 23 mai i -7.
x=-\frac{5}{2}
Whakahekea te hautanga \frac{-30}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{4}{3} x=-\frac{5}{2}
Kua oti te whārite te whakatau.
6x^{2}+7x-20=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}+7x-20-\left(-20\right)=-\left(-20\right)
Me tāpiri 20 ki ngā taha e rua o te whārite.
6x^{2}+7x=-\left(-20\right)
Mā te tango i te -20 i a ia ake anō ka toe ko te 0.
6x^{2}+7x=20
Tango -20 mai i 0.
\frac{6x^{2}+7x}{6}=\frac{20}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{7}{6}x=\frac{20}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+\frac{7}{6}x=\frac{10}{3}
Whakahekea te hautanga \frac{20}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{7}{6}x+\left(\frac{7}{12}\right)^{2}=\frac{10}{3}+\left(\frac{7}{12}\right)^{2}
Whakawehea te \frac{7}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{7}{12}. Nā, tāpiria te pūrua o te \frac{7}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{10}{3}+\frac{49}{144}
Pūruatia \frac{7}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{7}{6}x+\frac{49}{144}=\frac{529}{144}
Tāpiri \frac{10}{3} ki te \frac{49}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{7}{12}\right)^{2}=\frac{529}{144}
Tauwehea x^{2}+\frac{7}{6}x+\frac{49}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{7}{12}\right)^{2}}=\sqrt{\frac{529}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{7}{12}=\frac{23}{12} x+\frac{7}{12}=-\frac{23}{12}
Whakarūnātia.
x=\frac{4}{3} x=-\frac{5}{2}
Me tango \frac{7}{12} mai i ngā taha e rua o te whārite.