Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{2}+5x-6=0
Tangohia te 6 mai i ngā taha e rua.
a+b=5 ab=6\left(-6\right)=-36
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx-6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,36 -2,18 -3,12 -4,9 -6,6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Tātaihia te tapeke mō ia takirua.
a=-4 b=9
Ko te otinga te takirua ka hoatu i te tapeke 5.
\left(6x^{2}-4x\right)+\left(9x-6\right)
Tuhia anō te 6x^{2}+5x-6 hei \left(6x^{2}-4x\right)+\left(9x-6\right).
2x\left(3x-2\right)+3\left(3x-2\right)
Tauwehea te 2x i te tuatahi me te 3 i te rōpū tuarua.
\left(3x-2\right)\left(2x+3\right)
Whakatauwehea atu te kīanga pātahi 3x-2 mā te whakamahi i te āhuatanga tātai tohatoha.
x=\frac{2}{3} x=-\frac{3}{2}
Hei kimi otinga whārite, me whakaoti te 3x-2=0 me te 2x+3=0.
6x^{2}+5x=6
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
6x^{2}+5x-6=6-6
Me tango 6 mai i ngā taha e rua o te whārite.
6x^{2}+5x-6=0
Mā te tango i te 6 i a ia ake anō ka toe ko te 0.
x=\frac{-5±\sqrt{5^{2}-4\times 6\left(-6\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 5 mō b, me -6 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-5±\sqrt{25-4\times 6\left(-6\right)}}{2\times 6}
Pūrua 5.
x=\frac{-5±\sqrt{25-24\left(-6\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-5±\sqrt{25+144}}{2\times 6}
Whakareatia -24 ki te -6.
x=\frac{-5±\sqrt{169}}{2\times 6}
Tāpiri 25 ki te 144.
x=\frac{-5±13}{2\times 6}
Tuhia te pūtakerua o te 169.
x=\frac{-5±13}{12}
Whakareatia 2 ki te 6.
x=\frac{8}{12}
Nā, me whakaoti te whārite x=\frac{-5±13}{12} ina he tāpiri te ±. Tāpiri -5 ki te 13.
x=\frac{2}{3}
Whakahekea te hautanga \frac{8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
x=-\frac{18}{12}
Nā, me whakaoti te whārite x=\frac{-5±13}{12} ina he tango te ±. Tango 13 mai i -5.
x=-\frac{3}{2}
Whakahekea te hautanga \frac{-18}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
x=\frac{2}{3} x=-\frac{3}{2}
Kua oti te whārite te whakatau.
6x^{2}+5x=6
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{6x^{2}+5x}{6}=\frac{6}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{5}{6}x=\frac{6}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+\frac{5}{6}x=1
Whakawehe 6 ki te 6.
x^{2}+\frac{5}{6}x+\left(\frac{5}{12}\right)^{2}=1+\left(\frac{5}{12}\right)^{2}
Whakawehea te \frac{5}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{12}. Nā, tāpiria te pūrua o te \frac{5}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{6}x+\frac{25}{144}=1+\frac{25}{144}
Pūruatia \frac{5}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{6}x+\frac{25}{144}=\frac{169}{144}
Tāpiri 1 ki te \frac{25}{144}.
\left(x+\frac{5}{12}\right)^{2}=\frac{169}{144}
Tauwehea x^{2}+\frac{5}{6}x+\frac{25}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{12}=\frac{13}{12} x+\frac{5}{12}=-\frac{13}{12}
Whakarūnātia.
x=\frac{2}{3} x=-\frac{3}{2}
Me tango \frac{5}{12} mai i ngā taha e rua o te whārite.