Tauwehe
\left(x+7\right)\left(6x+5\right)
Aromātai
\left(x+7\right)\left(6x+5\right)
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=47 ab=6\times 35=210
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6x^{2}+ax+bx+35. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,210 2,105 3,70 5,42 6,35 7,30 10,21 14,15
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 210.
1+210=211 2+105=107 3+70=73 5+42=47 6+35=41 7+30=37 10+21=31 14+15=29
Tātaihia te tapeke mō ia takirua.
a=5 b=42
Ko te otinga te takirua ka hoatu i te tapeke 47.
\left(6x^{2}+5x\right)+\left(42x+35\right)
Tuhia anō te 6x^{2}+47x+35 hei \left(6x^{2}+5x\right)+\left(42x+35\right).
x\left(6x+5\right)+7\left(6x+5\right)
Tauwehea te x i te tuatahi me te 7 i te rōpū tuarua.
\left(6x+5\right)\left(x+7\right)
Whakatauwehea atu te kīanga pātahi 6x+5 mā te whakamahi i te āhuatanga tātai tohatoha.
6x^{2}+47x+35=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-47±\sqrt{47^{2}-4\times 6\times 35}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-47±\sqrt{2209-4\times 6\times 35}}{2\times 6}
Pūrua 47.
x=\frac{-47±\sqrt{2209-24\times 35}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-47±\sqrt{2209-840}}{2\times 6}
Whakareatia -24 ki te 35.
x=\frac{-47±\sqrt{1369}}{2\times 6}
Tāpiri 2209 ki te -840.
x=\frac{-47±37}{2\times 6}
Tuhia te pūtakerua o te 1369.
x=\frac{-47±37}{12}
Whakareatia 2 ki te 6.
x=-\frac{10}{12}
Nā, me whakaoti te whārite x=\frac{-47±37}{12} ina he tāpiri te ±. Tāpiri -47 ki te 37.
x=-\frac{5}{6}
Whakahekea te hautanga \frac{-10}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{84}{12}
Nā, me whakaoti te whārite x=\frac{-47±37}{12} ina he tango te ±. Tango 37 mai i -47.
x=-7
Whakawehe -84 ki te 12.
6x^{2}+47x+35=6\left(x-\left(-\frac{5}{6}\right)\right)\left(x-\left(-7\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{5}{6} mō te x_{1} me te -7 mō te x_{2}.
6x^{2}+47x+35=6\left(x+\frac{5}{6}\right)\left(x+7\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6x^{2}+47x+35=6\times \frac{6x+5}{6}\left(x+7\right)
Tāpiri \frac{5}{6} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}+47x+35=\left(6x+5\right)\left(x+7\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}