Whakaoti mō x
x=\frac{\sqrt{195}}{6}-\frac{3}{2}\approx 0.827373341
x=-\frac{\sqrt{195}}{6}-\frac{3}{2}\approx -3.827373341
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x^{2}+18x-19=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-18±\sqrt{18^{2}-4\times 6\left(-19\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 18 mō b, me -19 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-18±\sqrt{324-4\times 6\left(-19\right)}}{2\times 6}
Pūrua 18.
x=\frac{-18±\sqrt{324-24\left(-19\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-18±\sqrt{324+456}}{2\times 6}
Whakareatia -24 ki te -19.
x=\frac{-18±\sqrt{780}}{2\times 6}
Tāpiri 324 ki te 456.
x=\frac{-18±2\sqrt{195}}{2\times 6}
Tuhia te pūtakerua o te 780.
x=\frac{-18±2\sqrt{195}}{12}
Whakareatia 2 ki te 6.
x=\frac{2\sqrt{195}-18}{12}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{195}}{12} ina he tāpiri te ±. Tāpiri -18 ki te 2\sqrt{195}.
x=\frac{\sqrt{195}}{6}-\frac{3}{2}
Whakawehe -18+2\sqrt{195} ki te 12.
x=\frac{-2\sqrt{195}-18}{12}
Nā, me whakaoti te whārite x=\frac{-18±2\sqrt{195}}{12} ina he tango te ±. Tango 2\sqrt{195} mai i -18.
x=-\frac{\sqrt{195}}{6}-\frac{3}{2}
Whakawehe -18-2\sqrt{195} ki te 12.
x=\frac{\sqrt{195}}{6}-\frac{3}{2} x=-\frac{\sqrt{195}}{6}-\frac{3}{2}
Kua oti te whārite te whakatau.
6x^{2}+18x-19=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}+18x-19-\left(-19\right)=-\left(-19\right)
Me tāpiri 19 ki ngā taha e rua o te whārite.
6x^{2}+18x=-\left(-19\right)
Mā te tango i te -19 i a ia ake anō ka toe ko te 0.
6x^{2}+18x=19
Tango -19 mai i 0.
\frac{6x^{2}+18x}{6}=\frac{19}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{18}{6}x=\frac{19}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+3x=\frac{19}{6}
Whakawehe 18 ki te 6.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=\frac{19}{6}+\left(\frac{3}{2}\right)^{2}
Whakawehea te 3, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{2}. Nā, tāpiria te pūrua o te \frac{3}{2} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+3x+\frac{9}{4}=\frac{19}{6}+\frac{9}{4}
Pūruatia \frac{3}{2} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+3x+\frac{9}{4}=\frac{65}{12}
Tāpiri \frac{19}{6} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{3}{2}\right)^{2}=\frac{65}{12}
Tauwehea x^{2}+3x+\frac{9}{4}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{65}{12}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{3}{2}=\frac{\sqrt{195}}{6} x+\frac{3}{2}=-\frac{\sqrt{195}}{6}
Whakarūnātia.
x=\frac{\sqrt{195}}{6}-\frac{3}{2} x=-\frac{\sqrt{195}}{6}-\frac{3}{2}
Me tango \frac{3}{2} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}