Whakaoti mō x
x=-\frac{5}{6}\approx -0.833333333
x=-2
Graph
Tohaina
Kua tāruatia ki te papatopenga
a+b=17 ab=6\times 10=60
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6x^{2}+ax+bx+10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,60 2,30 3,20 4,15 5,12 6,10
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 60.
1+60=61 2+30=32 3+20=23 4+15=19 5+12=17 6+10=16
Tātaihia te tapeke mō ia takirua.
a=5 b=12
Ko te otinga te takirua ka hoatu i te tapeke 17.
\left(6x^{2}+5x\right)+\left(12x+10\right)
Tuhia anō te 6x^{2}+17x+10 hei \left(6x^{2}+5x\right)+\left(12x+10\right).
x\left(6x+5\right)+2\left(6x+5\right)
Tauwehea te x i te tuatahi me te 2 i te rōpū tuarua.
\left(6x+5\right)\left(x+2\right)
Whakatauwehea atu te kīanga pātahi 6x+5 mā te whakamahi i te āhuatanga tātai tohatoha.
x=-\frac{5}{6} x=-2
Hei kimi otinga whārite, me whakaoti te 6x+5=0 me te x+2=0.
6x^{2}+17x+10=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-17±\sqrt{17^{2}-4\times 6\times 10}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 17 mō b, me 10 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±\sqrt{289-4\times 6\times 10}}{2\times 6}
Pūrua 17.
x=\frac{-17±\sqrt{289-24\times 10}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-17±\sqrt{289-240}}{2\times 6}
Whakareatia -24 ki te 10.
x=\frac{-17±\sqrt{49}}{2\times 6}
Tāpiri 289 ki te -240.
x=\frac{-17±7}{2\times 6}
Tuhia te pūtakerua o te 49.
x=\frac{-17±7}{12}
Whakareatia 2 ki te 6.
x=-\frac{10}{12}
Nā, me whakaoti te whārite x=\frac{-17±7}{12} ina he tāpiri te ±. Tāpiri -17 ki te 7.
x=-\frac{5}{6}
Whakahekea te hautanga \frac{-10}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x=-\frac{24}{12}
Nā, me whakaoti te whārite x=\frac{-17±7}{12} ina he tango te ±. Tango 7 mai i -17.
x=-2
Whakawehe -24 ki te 12.
x=-\frac{5}{6} x=-2
Kua oti te whārite te whakatau.
6x^{2}+17x+10=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}+17x+10-10=-10
Me tango 10 mai i ngā taha e rua o te whārite.
6x^{2}+17x=-10
Mā te tango i te 10 i a ia ake anō ka toe ko te 0.
\frac{6x^{2}+17x}{6}=-\frac{10}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{17}{6}x=-\frac{10}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+\frac{17}{6}x=-\frac{5}{3}
Whakahekea te hautanga \frac{-10}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
x^{2}+\frac{17}{6}x+\left(\frac{17}{12}\right)^{2}=-\frac{5}{3}+\left(\frac{17}{12}\right)^{2}
Whakawehea te \frac{17}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{17}{12}. Nā, tāpiria te pūrua o te \frac{17}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{17}{6}x+\frac{289}{144}=-\frac{5}{3}+\frac{289}{144}
Pūruatia \frac{17}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{17}{6}x+\frac{289}{144}=\frac{49}{144}
Tāpiri -\frac{5}{3} ki te \frac{289}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{17}{12}\right)^{2}=\frac{49}{144}
Tauwehea x^{2}+\frac{17}{6}x+\frac{289}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{17}{12}\right)^{2}}=\sqrt{\frac{49}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{17}{12}=\frac{7}{12} x+\frac{17}{12}=-\frac{7}{12}
Whakarūnātia.
x=-\frac{5}{6} x=-2
Me tango \frac{17}{12} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}