Whakaoti mō x
x=\frac{\sqrt{57}-5}{4}\approx 0.637458609
x=\frac{-\sqrt{57}-5}{4}\approx -3.137458609
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x^{2}+15x-9=3
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
6x^{2}+15x-9-3=3-3
Me tango 3 mai i ngā taha e rua o te whārite.
6x^{2}+15x-9-3=0
Mā te tango i te 3 i a ia ake anō ka toe ko te 0.
6x^{2}+15x-12=0
Tango 3 mai i -9.
x=\frac{-15±\sqrt{15^{2}-4\times 6\left(-12\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 15 mō b, me -12 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-15±\sqrt{225-4\times 6\left(-12\right)}}{2\times 6}
Pūrua 15.
x=\frac{-15±\sqrt{225-24\left(-12\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-15±\sqrt{225+288}}{2\times 6}
Whakareatia -24 ki te -12.
x=\frac{-15±\sqrt{513}}{2\times 6}
Tāpiri 225 ki te 288.
x=\frac{-15±3\sqrt{57}}{2\times 6}
Tuhia te pūtakerua o te 513.
x=\frac{-15±3\sqrt{57}}{12}
Whakareatia 2 ki te 6.
x=\frac{3\sqrt{57}-15}{12}
Nā, me whakaoti te whārite x=\frac{-15±3\sqrt{57}}{12} ina he tāpiri te ±. Tāpiri -15 ki te 3\sqrt{57}.
x=\frac{\sqrt{57}-5}{4}
Whakawehe -15+3\sqrt{57} ki te 12.
x=\frac{-3\sqrt{57}-15}{12}
Nā, me whakaoti te whārite x=\frac{-15±3\sqrt{57}}{12} ina he tango te ±. Tango 3\sqrt{57} mai i -15.
x=\frac{-\sqrt{57}-5}{4}
Whakawehe -15-3\sqrt{57} ki te 12.
x=\frac{\sqrt{57}-5}{4} x=\frac{-\sqrt{57}-5}{4}
Kua oti te whārite te whakatau.
6x^{2}+15x-9=3
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}+15x-9-\left(-9\right)=3-\left(-9\right)
Me tāpiri 9 ki ngā taha e rua o te whārite.
6x^{2}+15x=3-\left(-9\right)
Mā te tango i te -9 i a ia ake anō ka toe ko te 0.
6x^{2}+15x=12
Tango -9 mai i 3.
\frac{6x^{2}+15x}{6}=\frac{12}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{15}{6}x=\frac{12}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+\frac{5}{2}x=\frac{12}{6}
Whakahekea te hautanga \frac{15}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{5}{2}x=2
Whakawehe 12 ki te 6.
x^{2}+\frac{5}{2}x+\left(\frac{5}{4}\right)^{2}=2+\left(\frac{5}{4}\right)^{2}
Whakawehea te \frac{5}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{4}. Nā, tāpiria te pūrua o te \frac{5}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{2}x+\frac{25}{16}=2+\frac{25}{16}
Pūruatia \frac{5}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{2}x+\frac{25}{16}=\frac{57}{16}
Tāpiri 2 ki te \frac{25}{16}.
\left(x+\frac{5}{4}\right)^{2}=\frac{57}{16}
Tauwehea x^{2}+\frac{5}{2}x+\frac{25}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{4}\right)^{2}}=\sqrt{\frac{57}{16}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{4}=\frac{\sqrt{57}}{4} x+\frac{5}{4}=-\frac{\sqrt{57}}{4}
Whakarūnātia.
x=\frac{\sqrt{57}-5}{4} x=\frac{-\sqrt{57}-5}{4}
Me tango \frac{5}{4} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}