Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

3\left(2x^{2}+5x\right)
Tauwehea te 3.
x\left(2x+5\right)
Whakaarohia te 2x^{2}+5x. Tauwehea te x.
3x\left(2x+5\right)
Me tuhi anō te kīanga whakatauwehe katoa.
6x^{2}+15x=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
x=\frac{-15±\sqrt{15^{2}}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-15±15}{2\times 6}
Tuhia te pūtakerua o te 15^{2}.
x=\frac{-15±15}{12}
Whakareatia 2 ki te 6.
x=\frac{0}{12}
Nā, me whakaoti te whārite x=\frac{-15±15}{12} ina he tāpiri te ±. Tāpiri -15 ki te 15.
x=0
Whakawehe 0 ki te 12.
x=-\frac{30}{12}
Nā, me whakaoti te whārite x=\frac{-15±15}{12} ina he tango te ±. Tango 15 mai i -15.
x=-\frac{5}{2}
Whakahekea te hautanga \frac{-30}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
6x^{2}+15x=6x\left(x-\left(-\frac{5}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te -\frac{5}{2} mō te x_{2}.
6x^{2}+15x=6x\left(x+\frac{5}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6x^{2}+15x=6x\times \frac{2x+5}{2}
Tāpiri \frac{5}{2} ki te x mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6x^{2}+15x=3x\left(2x+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 6 me te 2.