Whakaoti mō x
x=\sqrt{55}+6\approx 13.416198487
x=6-\sqrt{55}\approx -1.416198487
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x^{2}+12x+14-7x^{2}=-5
Tangohia te 7x^{2} mai i ngā taha e rua.
-x^{2}+12x+14=-5
Pahekotia te 6x^{2} me -7x^{2}, ka -x^{2}.
-x^{2}+12x+14+5=0
Me tāpiri te 5 ki ngā taha e rua.
-x^{2}+12x+19=0
Tāpirihia te 14 ki te 5, ka 19.
x=\frac{-12±\sqrt{12^{2}-4\left(-1\right)\times 19}}{2\left(-1\right)}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi -1 mō a, 12 mō b, me 19 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-12±\sqrt{144-4\left(-1\right)\times 19}}{2\left(-1\right)}
Pūrua 12.
x=\frac{-12±\sqrt{144+4\times 19}}{2\left(-1\right)}
Whakareatia -4 ki te -1.
x=\frac{-12±\sqrt{144+76}}{2\left(-1\right)}
Whakareatia 4 ki te 19.
x=\frac{-12±\sqrt{220}}{2\left(-1\right)}
Tāpiri 144 ki te 76.
x=\frac{-12±2\sqrt{55}}{2\left(-1\right)}
Tuhia te pūtakerua o te 220.
x=\frac{-12±2\sqrt{55}}{-2}
Whakareatia 2 ki te -1.
x=\frac{2\sqrt{55}-12}{-2}
Nā, me whakaoti te whārite x=\frac{-12±2\sqrt{55}}{-2} ina he tāpiri te ±. Tāpiri -12 ki te 2\sqrt{55}.
x=6-\sqrt{55}
Whakawehe -12+2\sqrt{55} ki te -2.
x=\frac{-2\sqrt{55}-12}{-2}
Nā, me whakaoti te whārite x=\frac{-12±2\sqrt{55}}{-2} ina he tango te ±. Tango 2\sqrt{55} mai i -12.
x=\sqrt{55}+6
Whakawehe -12-2\sqrt{55} ki te -2.
x=6-\sqrt{55} x=\sqrt{55}+6
Kua oti te whārite te whakatau.
6x^{2}+12x+14-7x^{2}=-5
Tangohia te 7x^{2} mai i ngā taha e rua.
-x^{2}+12x+14=-5
Pahekotia te 6x^{2} me -7x^{2}, ka -x^{2}.
-x^{2}+12x=-5-14
Tangohia te 14 mai i ngā taha e rua.
-x^{2}+12x=-19
Tangohia te 14 i te -5, ka -19.
\frac{-x^{2}+12x}{-1}=-\frac{19}{-1}
Whakawehea ngā taha e rua ki te -1.
x^{2}+\frac{12}{-1}x=-\frac{19}{-1}
Mā te whakawehe ki te -1 ka wetekia te whakareanga ki te -1.
x^{2}-12x=-\frac{19}{-1}
Whakawehe 12 ki te -1.
x^{2}-12x=19
Whakawehe -19 ki te -1.
x^{2}-12x+\left(-6\right)^{2}=19+\left(-6\right)^{2}
Whakawehea te -12, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -6. Nā, tāpiria te pūrua o te -6 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}-12x+36=19+36
Pūrua -6.
x^{2}-12x+36=55
Tāpiri 19 ki te 36.
\left(x-6\right)^{2}=55
Tauwehea x^{2}-12x+36. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{55}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x-6=\sqrt{55} x-6=-\sqrt{55}
Whakarūnātia.
x=\sqrt{55}+6 x=6-\sqrt{55}
Me tāpiri 6 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}