Tīpoka ki ngā ihirangi matua
Whakaoti mō x
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6x^{2}=8-1
Tangohia te 1 mai i ngā taha e rua.
6x^{2}=7
Tangohia te 1 i te 8, ka 7.
x^{2}=\frac{7}{6}
Whakawehea ngā taha e rua ki te 6.
x=\frac{\sqrt{42}}{6} x=-\frac{\sqrt{42}}{6}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
6x^{2}+1-8=0
Tangohia te 8 mai i ngā taha e rua.
6x^{2}-7=0
Tangohia te 8 i te 1, ka -7.
x=\frac{0±\sqrt{0^{2}-4\times 6\left(-7\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 0 mō b, me -7 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\times 6\left(-7\right)}}{2\times 6}
Pūrua 0.
x=\frac{0±\sqrt{-24\left(-7\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{0±\sqrt{168}}{2\times 6}
Whakareatia -24 ki te -7.
x=\frac{0±2\sqrt{42}}{2\times 6}
Tuhia te pūtakerua o te 168.
x=\frac{0±2\sqrt{42}}{12}
Whakareatia 2 ki te 6.
x=\frac{\sqrt{42}}{6}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{42}}{12} ina he tāpiri te ±.
x=-\frac{\sqrt{42}}{6}
Nā, me whakaoti te whārite x=\frac{0±2\sqrt{42}}{12} ina he tango te ±.
x=\frac{\sqrt{42}}{6} x=-\frac{\sqrt{42}}{6}
Kua oti te whārite te whakatau.