Whakaoti mō x
x = \frac{\sqrt{4561} - 5}{36} \approx 1.737088223
x=\frac{-\sqrt{4561}-5}{36}\approx -2.014866001
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x^{2}+\frac{5}{3}x-21=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
x=\frac{-\frac{5}{3}±\sqrt{\left(\frac{5}{3}\right)^{2}-4\times 6\left(-21\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, \frac{5}{3} mō b, me -21 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{5}{3}±\sqrt{\frac{25}{9}-4\times 6\left(-21\right)}}{2\times 6}
Pūruatia \frac{5}{3} mā te pūrua i te taurunga me te tauraro o te hautanga.
x=\frac{-\frac{5}{3}±\sqrt{\frac{25}{9}-24\left(-21\right)}}{2\times 6}
Whakareatia -4 ki te 6.
x=\frac{-\frac{5}{3}±\sqrt{\frac{25}{9}+504}}{2\times 6}
Whakareatia -24 ki te -21.
x=\frac{-\frac{5}{3}±\sqrt{\frac{4561}{9}}}{2\times 6}
Tāpiri \frac{25}{9} ki te 504.
x=\frac{-\frac{5}{3}±\frac{\sqrt{4561}}{3}}{2\times 6}
Tuhia te pūtakerua o te \frac{4561}{9}.
x=\frac{-\frac{5}{3}±\frac{\sqrt{4561}}{3}}{12}
Whakareatia 2 ki te 6.
x=\frac{\sqrt{4561}-5}{3\times 12}
Nā, me whakaoti te whārite x=\frac{-\frac{5}{3}±\frac{\sqrt{4561}}{3}}{12} ina he tāpiri te ±. Tāpiri -\frac{5}{3} ki te \frac{\sqrt{4561}}{3}.
x=\frac{\sqrt{4561}-5}{36}
Whakawehe \frac{-5+\sqrt{4561}}{3} ki te 12.
x=\frac{-\sqrt{4561}-5}{3\times 12}
Nā, me whakaoti te whārite x=\frac{-\frac{5}{3}±\frac{\sqrt{4561}}{3}}{12} ina he tango te ±. Tango \frac{\sqrt{4561}}{3} mai i -\frac{5}{3}.
x=\frac{-\sqrt{4561}-5}{36}
Whakawehe \frac{-5-\sqrt{4561}}{3} ki te 12.
x=\frac{\sqrt{4561}-5}{36} x=\frac{-\sqrt{4561}-5}{36}
Kua oti te whārite te whakatau.
6x^{2}+\frac{5}{3}x-21=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6x^{2}+\frac{5}{3}x-21-\left(-21\right)=-\left(-21\right)
Me tāpiri 21 ki ngā taha e rua o te whārite.
6x^{2}+\frac{5}{3}x=-\left(-21\right)
Mā te tango i te -21 i a ia ake anō ka toe ko te 0.
6x^{2}+\frac{5}{3}x=21
Tango -21 mai i 0.
\frac{6x^{2}+\frac{5}{3}x}{6}=\frac{21}{6}
Whakawehea ngā taha e rua ki te 6.
x^{2}+\frac{\frac{5}{3}}{6}x=\frac{21}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
x^{2}+\frac{5}{18}x=\frac{21}{6}
Whakawehe \frac{5}{3} ki te 6.
x^{2}+\frac{5}{18}x=\frac{7}{2}
Whakahekea te hautanga \frac{21}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
x^{2}+\frac{5}{18}x+\left(\frac{5}{36}\right)^{2}=\frac{7}{2}+\left(\frac{5}{36}\right)^{2}
Whakawehea te \frac{5}{18}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{5}{36}. Nā, tāpiria te pūrua o te \frac{5}{36} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
x^{2}+\frac{5}{18}x+\frac{25}{1296}=\frac{7}{2}+\frac{25}{1296}
Pūruatia \frac{5}{36} mā te pūrua i te taurunga me te tauraro o te hautanga.
x^{2}+\frac{5}{18}x+\frac{25}{1296}=\frac{4561}{1296}
Tāpiri \frac{7}{2} ki te \frac{25}{1296} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(x+\frac{5}{36}\right)^{2}=\frac{4561}{1296}
Tauwehea x^{2}+\frac{5}{18}x+\frac{25}{1296}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{5}{36}\right)^{2}}=\sqrt{\frac{4561}{1296}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
x+\frac{5}{36}=\frac{\sqrt{4561}}{36} x+\frac{5}{36}=-\frac{\sqrt{4561}}{36}
Whakarūnātia.
x=\frac{\sqrt{4561}-5}{36} x=\frac{-\sqrt{4561}-5}{36}
Me tango \frac{5}{36} mai i ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}