6 x + 24 = ( 1 - 12 \% ) 5 x \cdot ( 1 + 20 \% )
Whakaoti mō x
x = -\frac{100}{3} = -33\frac{1}{3} \approx -33.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
6x+24=\left(1-\frac{3}{25}\right)\times 5x\left(1+\frac{20}{100}\right)
Whakahekea te hautanga \frac{12}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
6x+24=\left(\frac{25}{25}-\frac{3}{25}\right)\times 5x\left(1+\frac{20}{100}\right)
Me tahuri te 1 ki te hautau \frac{25}{25}.
6x+24=\frac{25-3}{25}\times 5x\left(1+\frac{20}{100}\right)
Tā te mea he rite te tauraro o \frac{25}{25} me \frac{3}{25}, me tango rāua mā te tango i ō raua taurunga.
6x+24=\frac{22}{25}\times 5x\left(1+\frac{20}{100}\right)
Tangohia te 3 i te 25, ka 22.
6x+24=\frac{22\times 5}{25}x\left(1+\frac{20}{100}\right)
Tuhia te \frac{22}{25}\times 5 hei hautanga kotahi.
6x+24=\frac{110}{25}x\left(1+\frac{20}{100}\right)
Whakareatia te 22 ki te 5, ka 110.
6x+24=\frac{22}{5}x\left(1+\frac{20}{100}\right)
Whakahekea te hautanga \frac{110}{25} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 5.
6x+24=\frac{22}{5}x\left(1+\frac{1}{5}\right)
Whakahekea te hautanga \frac{20}{100} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 20.
6x+24=\frac{22}{5}x\left(\frac{5}{5}+\frac{1}{5}\right)
Me tahuri te 1 ki te hautau \frac{5}{5}.
6x+24=\frac{22}{5}x\times \frac{5+1}{5}
Tā te mea he rite te tauraro o \frac{5}{5} me \frac{1}{5}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
6x+24=\frac{22}{5}x\times \frac{6}{5}
Tāpirihia te 5 ki te 1, ka 6.
6x+24=\frac{22\times 6}{5\times 5}x
Me whakarea te \frac{22}{5} ki te \frac{6}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro.
6x+24=\frac{132}{25}x
Mahia ngā whakarea i roto i te hautanga \frac{22\times 6}{5\times 5}.
6x+24-\frac{132}{25}x=0
Tangohia te \frac{132}{25}x mai i ngā taha e rua.
\frac{18}{25}x+24=0
Pahekotia te 6x me -\frac{132}{25}x, ka \frac{18}{25}x.
\frac{18}{25}x=-24
Tangohia te 24 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
x=-24\times \frac{25}{18}
Me whakarea ngā taha e rua ki te \frac{25}{18}, te tau utu o \frac{18}{25}.
x=\frac{-24\times 25}{18}
Tuhia te -24\times \frac{25}{18} hei hautanga kotahi.
x=\frac{-600}{18}
Whakareatia te -24 ki te 25, ka -600.
x=-\frac{100}{3}
Whakahekea te hautanga \frac{-600}{18} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}