Tauwehe
\left(w-2\right)\left(6w+5\right)
Aromātai
\left(w-2\right)\left(6w+5\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=-7 ab=6\left(-10\right)=-60
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6w^{2}+aw+bw-10. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-60 2,-30 3,-20 4,-15 5,-12 6,-10
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -60.
1-60=-59 2-30=-28 3-20=-17 4-15=-11 5-12=-7 6-10=-4
Tātaihia te tapeke mō ia takirua.
a=-12 b=5
Ko te otinga te takirua ka hoatu i te tapeke -7.
\left(6w^{2}-12w\right)+\left(5w-10\right)
Tuhia anō te 6w^{2}-7w-10 hei \left(6w^{2}-12w\right)+\left(5w-10\right).
6w\left(w-2\right)+5\left(w-2\right)
Tauwehea te 6w i te tuatahi me te 5 i te rōpū tuarua.
\left(w-2\right)\left(6w+5\right)
Whakatauwehea atu te kīanga pātahi w-2 mā te whakamahi i te āhuatanga tātai tohatoha.
6w^{2}-7w-10=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
w=\frac{-\left(-7\right)±\sqrt{\left(-7\right)^{2}-4\times 6\left(-10\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-\left(-7\right)±\sqrt{49-4\times 6\left(-10\right)}}{2\times 6}
Pūrua -7.
w=\frac{-\left(-7\right)±\sqrt{49-24\left(-10\right)}}{2\times 6}
Whakareatia -4 ki te 6.
w=\frac{-\left(-7\right)±\sqrt{49+240}}{2\times 6}
Whakareatia -24 ki te -10.
w=\frac{-\left(-7\right)±\sqrt{289}}{2\times 6}
Tāpiri 49 ki te 240.
w=\frac{-\left(-7\right)±17}{2\times 6}
Tuhia te pūtakerua o te 289.
w=\frac{7±17}{2\times 6}
Ko te tauaro o -7 ko 7.
w=\frac{7±17}{12}
Whakareatia 2 ki te 6.
w=\frac{24}{12}
Nā, me whakaoti te whārite w=\frac{7±17}{12} ina he tāpiri te ±. Tāpiri 7 ki te 17.
w=2
Whakawehe 24 ki te 12.
w=-\frac{10}{12}
Nā, me whakaoti te whārite w=\frac{7±17}{12} ina he tango te ±. Tango 17 mai i 7.
w=-\frac{5}{6}
Whakahekea te hautanga \frac{-10}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
6w^{2}-7w-10=6\left(w-2\right)\left(w-\left(-\frac{5}{6}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 2 mō te x_{1} me te -\frac{5}{6} mō te x_{2}.
6w^{2}-7w-10=6\left(w-2\right)\left(w+\frac{5}{6}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6w^{2}-7w-10=6\left(w-2\right)\times \frac{6w+5}{6}
Tāpiri \frac{5}{6} ki te w mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6w^{2}-7w-10=\left(w-2\right)\left(6w+5\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}