Tauwehe
6\left(w-12\right)\left(w+1\right)
Aromātai
6\left(w-12\right)\left(w+1\right)
Tohaina
Kua tāruatia ki te papatopenga
6\left(w^{2}-11w-12\right)
Tauwehea te 6.
a+b=-11 ab=1\left(-12\right)=-12
Whakaarohia te w^{2}-11w-12. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei w^{2}+aw+bw-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-12 2,-6 3,-4
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -12.
1-12=-11 2-6=-4 3-4=-1
Tātaihia te tapeke mō ia takirua.
a=-12 b=1
Ko te otinga te takirua ka hoatu i te tapeke -11.
\left(w^{2}-12w\right)+\left(w-12\right)
Tuhia anō te w^{2}-11w-12 hei \left(w^{2}-12w\right)+\left(w-12\right).
w\left(w-12\right)+w-12
Whakatauwehea atu w i te w^{2}-12w.
\left(w-12\right)\left(w+1\right)
Whakatauwehea atu te kīanga pātahi w-12 mā te whakamahi i te āhuatanga tātai tohatoha.
6\left(w-12\right)\left(w+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
6w^{2}-66w-72=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
w=\frac{-\left(-66\right)±\sqrt{\left(-66\right)^{2}-4\times 6\left(-72\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-\left(-66\right)±\sqrt{4356-4\times 6\left(-72\right)}}{2\times 6}
Pūrua -66.
w=\frac{-\left(-66\right)±\sqrt{4356-24\left(-72\right)}}{2\times 6}
Whakareatia -4 ki te 6.
w=\frac{-\left(-66\right)±\sqrt{4356+1728}}{2\times 6}
Whakareatia -24 ki te -72.
w=\frac{-\left(-66\right)±\sqrt{6084}}{2\times 6}
Tāpiri 4356 ki te 1728.
w=\frac{-\left(-66\right)±78}{2\times 6}
Tuhia te pūtakerua o te 6084.
w=\frac{66±78}{2\times 6}
Ko te tauaro o -66 ko 66.
w=\frac{66±78}{12}
Whakareatia 2 ki te 6.
w=\frac{144}{12}
Nā, me whakaoti te whārite w=\frac{66±78}{12} ina he tāpiri te ±. Tāpiri 66 ki te 78.
w=12
Whakawehe 144 ki te 12.
w=-\frac{12}{12}
Nā, me whakaoti te whārite w=\frac{66±78}{12} ina he tango te ±. Tango 78 mai i 66.
w=-1
Whakawehe -12 ki te 12.
6w^{2}-66w-72=6\left(w-12\right)\left(w-\left(-1\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 12 mō te x_{1} me te -1 mō te x_{2}.
6w^{2}-66w-72=6\left(w-12\right)\left(w+1\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}