Tīpoka ki ngā ihirangi matua
Whakaoti mō w
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6w^{2}-13+3w^{2}=15
Me tāpiri te 3w^{2} ki ngā taha e rua.
9w^{2}-13=15
Pahekotia te 6w^{2} me 3w^{2}, ka 9w^{2}.
9w^{2}=15+13
Me tāpiri te 13 ki ngā taha e rua.
9w^{2}=28
Tāpirihia te 15 ki te 13, ka 28.
w^{2}=\frac{28}{9}
Whakawehea ngā taha e rua ki te 9.
w=\frac{2\sqrt{7}}{3} w=-\frac{2\sqrt{7}}{3}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
6w^{2}-13-15=-3w^{2}
Tangohia te 15 mai i ngā taha e rua.
6w^{2}-28=-3w^{2}
Tangohia te 15 i te -13, ka -28.
6w^{2}-28+3w^{2}=0
Me tāpiri te 3w^{2} ki ngā taha e rua.
9w^{2}-28=0
Pahekotia te 6w^{2} me 3w^{2}, ka 9w^{2}.
w=\frac{0±\sqrt{0^{2}-4\times 9\left(-28\right)}}{2\times 9}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 9 mō a, 0 mō b, me -28 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
w=\frac{0±\sqrt{-4\times 9\left(-28\right)}}{2\times 9}
Pūrua 0.
w=\frac{0±\sqrt{-36\left(-28\right)}}{2\times 9}
Whakareatia -4 ki te 9.
w=\frac{0±\sqrt{1008}}{2\times 9}
Whakareatia -36 ki te -28.
w=\frac{0±12\sqrt{7}}{2\times 9}
Tuhia te pūtakerua o te 1008.
w=\frac{0±12\sqrt{7}}{18}
Whakareatia 2 ki te 9.
w=\frac{2\sqrt{7}}{3}
Nā, me whakaoti te whārite w=\frac{0±12\sqrt{7}}{18} ina he tāpiri te ±.
w=-\frac{2\sqrt{7}}{3}
Nā, me whakaoti te whārite w=\frac{0±12\sqrt{7}}{18} ina he tango te ±.
w=\frac{2\sqrt{7}}{3} w=-\frac{2\sqrt{7}}{3}
Kua oti te whārite te whakatau.