Tauwehe
\left(w+9\right)\left(6w+1\right)
Aromātai
\left(w+9\right)\left(6w+1\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=55 ab=6\times 9=54
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6w^{2}+aw+bw+9. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,54 2,27 3,18 6,9
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 54.
1+54=55 2+27=29 3+18=21 6+9=15
Tātaihia te tapeke mō ia takirua.
a=1 b=54
Ko te otinga te takirua ka hoatu i te tapeke 55.
\left(6w^{2}+w\right)+\left(54w+9\right)
Tuhia anō te 6w^{2}+55w+9 hei \left(6w^{2}+w\right)+\left(54w+9\right).
w\left(6w+1\right)+9\left(6w+1\right)
Tauwehea te w i te tuatahi me te 9 i te rōpū tuarua.
\left(6w+1\right)\left(w+9\right)
Whakatauwehea atu te kīanga pātahi 6w+1 mā te whakamahi i te āhuatanga tātai tohatoha.
6w^{2}+55w+9=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
w=\frac{-55±\sqrt{55^{2}-4\times 6\times 9}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
w=\frac{-55±\sqrt{3025-4\times 6\times 9}}{2\times 6}
Pūrua 55.
w=\frac{-55±\sqrt{3025-24\times 9}}{2\times 6}
Whakareatia -4 ki te 6.
w=\frac{-55±\sqrt{3025-216}}{2\times 6}
Whakareatia -24 ki te 9.
w=\frac{-55±\sqrt{2809}}{2\times 6}
Tāpiri 3025 ki te -216.
w=\frac{-55±53}{2\times 6}
Tuhia te pūtakerua o te 2809.
w=\frac{-55±53}{12}
Whakareatia 2 ki te 6.
w=-\frac{2}{12}
Nā, me whakaoti te whārite w=\frac{-55±53}{12} ina he tāpiri te ±. Tāpiri -55 ki te 53.
w=-\frac{1}{6}
Whakahekea te hautanga \frac{-2}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
w=-\frac{108}{12}
Nā, me whakaoti te whārite w=\frac{-55±53}{12} ina he tango te ±. Tango 53 mai i -55.
w=-9
Whakawehe -108 ki te 12.
6w^{2}+55w+9=6\left(w-\left(-\frac{1}{6}\right)\right)\left(w-\left(-9\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -\frac{1}{6} mō te x_{1} me te -9 mō te x_{2}.
6w^{2}+55w+9=6\left(w+\frac{1}{6}\right)\left(w+9\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6w^{2}+55w+9=6\times \frac{6w+1}{6}\left(w+9\right)
Tāpiri \frac{1}{6} ki te w mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6w^{2}+55w+9=\left(6w+1\right)\left(w+9\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}