Whakaoti mō u
u=4
u=0
Tohaina
Kua tāruatia ki te papatopenga
u\left(6u-24\right)=0
Tauwehea te u.
u=0 u=4
Hei kimi otinga whārite, me whakaoti te u=0 me te 6u-24=0.
6u^{2}-24u=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
u=\frac{-\left(-24\right)±\sqrt{\left(-24\right)^{2}}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -24 mō b, me 0 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
u=\frac{-\left(-24\right)±24}{2\times 6}
Tuhia te pūtakerua o te \left(-24\right)^{2}.
u=\frac{24±24}{2\times 6}
Ko te tauaro o -24 ko 24.
u=\frac{24±24}{12}
Whakareatia 2 ki te 6.
u=\frac{48}{12}
Nā, me whakaoti te whārite u=\frac{24±24}{12} ina he tāpiri te ±. Tāpiri 24 ki te 24.
u=4
Whakawehe 48 ki te 12.
u=\frac{0}{12}
Nā, me whakaoti te whārite u=\frac{24±24}{12} ina he tango te ±. Tango 24 mai i 24.
u=0
Whakawehe 0 ki te 12.
u=4 u=0
Kua oti te whārite te whakatau.
6u^{2}-24u=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
\frac{6u^{2}-24u}{6}=\frac{0}{6}
Whakawehea ngā taha e rua ki te 6.
u^{2}+\left(-\frac{24}{6}\right)u=\frac{0}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
u^{2}-4u=\frac{0}{6}
Whakawehe -24 ki te 6.
u^{2}-4u=0
Whakawehe 0 ki te 6.
u^{2}-4u+\left(-2\right)^{2}=\left(-2\right)^{2}
Whakawehea te -4, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -2. Nā, tāpiria te pūrua o te -2 ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
u^{2}-4u+4=4
Pūrua -2.
\left(u-2\right)^{2}=4
Tauwehea u^{2}-4u+4. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(u-2\right)^{2}}=\sqrt{4}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
u-2=2 u-2=-2
Whakarūnātia.
u=4 u=0
Me tāpiri 2 ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}