Tauwehe
6\left(u-\left(-\sqrt{10}-2\right)\right)\left(u-\left(\sqrt{10}-2\right)\right)
Aromātai
6\left(u^{2}+4u-6\right)
Tohaina
Kua tāruatia ki te papatopenga
6u^{2}+24u-36=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
u=\frac{-24±\sqrt{24^{2}-4\times 6\left(-36\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
u=\frac{-24±\sqrt{576-4\times 6\left(-36\right)}}{2\times 6}
Pūrua 24.
u=\frac{-24±\sqrt{576-24\left(-36\right)}}{2\times 6}
Whakareatia -4 ki te 6.
u=\frac{-24±\sqrt{576+864}}{2\times 6}
Whakareatia -24 ki te -36.
u=\frac{-24±\sqrt{1440}}{2\times 6}
Tāpiri 576 ki te 864.
u=\frac{-24±12\sqrt{10}}{2\times 6}
Tuhia te pūtakerua o te 1440.
u=\frac{-24±12\sqrt{10}}{12}
Whakareatia 2 ki te 6.
u=\frac{12\sqrt{10}-24}{12}
Nā, me whakaoti te whārite u=\frac{-24±12\sqrt{10}}{12} ina he tāpiri te ±. Tāpiri -24 ki te 12\sqrt{10}.
u=\sqrt{10}-2
Whakawehe -24+12\sqrt{10} ki te 12.
u=\frac{-12\sqrt{10}-24}{12}
Nā, me whakaoti te whārite u=\frac{-24±12\sqrt{10}}{12} ina he tango te ±. Tango 12\sqrt{10} mai i -24.
u=-\sqrt{10}-2
Whakawehe -24-12\sqrt{10} ki te 12.
6u^{2}+24u-36=6\left(u-\left(\sqrt{10}-2\right)\right)\left(u-\left(-\sqrt{10}-2\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -2+\sqrt{10} mō te x_{1} me te -2-\sqrt{10} mō te x_{2}.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}