Whakaoti mō t
t=\sqrt{5}\approx 2.236067977
t=-\sqrt{5}\approx -2.236067977
Tohaina
Kua tāruatia ki te papatopenga
6t^{2}+t^{2}=35
Me tāpiri te t^{2} ki ngā taha e rua.
7t^{2}=35
Pahekotia te 6t^{2} me t^{2}, ka 7t^{2}.
t^{2}=\frac{35}{7}
Whakawehea ngā taha e rua ki te 7.
t^{2}=5
Whakawehea te 35 ki te 7, kia riro ko 5.
t=\sqrt{5} t=-\sqrt{5}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
6t^{2}-35=-t^{2}
Tangohia te 35 mai i ngā taha e rua.
6t^{2}-35+t^{2}=0
Me tāpiri te t^{2} ki ngā taha e rua.
7t^{2}-35=0
Pahekotia te 6t^{2} me t^{2}, ka 7t^{2}.
t=\frac{0±\sqrt{0^{2}-4\times 7\left(-35\right)}}{2\times 7}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 7 mō a, 0 mō b, me -35 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
t=\frac{0±\sqrt{-4\times 7\left(-35\right)}}{2\times 7}
Pūrua 0.
t=\frac{0±\sqrt{-28\left(-35\right)}}{2\times 7}
Whakareatia -4 ki te 7.
t=\frac{0±\sqrt{980}}{2\times 7}
Whakareatia -28 ki te -35.
t=\frac{0±14\sqrt{5}}{2\times 7}
Tuhia te pūtakerua o te 980.
t=\frac{0±14\sqrt{5}}{14}
Whakareatia 2 ki te 7.
t=\sqrt{5}
Nā, me whakaoti te whārite t=\frac{0±14\sqrt{5}}{14} ina he tāpiri te ±.
t=-\sqrt{5}
Nā, me whakaoti te whārite t=\frac{0±14\sqrt{5}}{14} ina he tango te ±.
t=\sqrt{5} t=-\sqrt{5}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}