Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

a+b=1 ab=6\left(-12\right)=-72
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6t^{2}+at+bt-12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,72 -2,36 -3,24 -4,18 -6,12 -8,9
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -72.
-1+72=71 -2+36=34 -3+24=21 -4+18=14 -6+12=6 -8+9=1
Tātaihia te tapeke mō ia takirua.
a=-8 b=9
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(6t^{2}-8t\right)+\left(9t-12\right)
Tuhia anō te 6t^{2}+t-12 hei \left(6t^{2}-8t\right)+\left(9t-12\right).
2t\left(3t-4\right)+3\left(3t-4\right)
Tauwehea te 2t i te tuatahi me te 3 i te rōpū tuarua.
\left(3t-4\right)\left(2t+3\right)
Whakatauwehea atu te kīanga pātahi 3t-4 mā te whakamahi i te āhuatanga tātai tohatoha.
6t^{2}+t-12=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
t=\frac{-1±\sqrt{1^{2}-4\times 6\left(-12\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
t=\frac{-1±\sqrt{1-4\times 6\left(-12\right)}}{2\times 6}
Pūrua 1.
t=\frac{-1±\sqrt{1-24\left(-12\right)}}{2\times 6}
Whakareatia -4 ki te 6.
t=\frac{-1±\sqrt{1+288}}{2\times 6}
Whakareatia -24 ki te -12.
t=\frac{-1±\sqrt{289}}{2\times 6}
Tāpiri 1 ki te 288.
t=\frac{-1±17}{2\times 6}
Tuhia te pūtakerua o te 289.
t=\frac{-1±17}{12}
Whakareatia 2 ki te 6.
t=\frac{16}{12}
Nā, me whakaoti te whārite t=\frac{-1±17}{12} ina he tāpiri te ±. Tāpiri -1 ki te 17.
t=\frac{4}{3}
Whakahekea te hautanga \frac{16}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
t=-\frac{18}{12}
Nā, me whakaoti te whārite t=\frac{-1±17}{12} ina he tango te ±. Tango 17 mai i -1.
t=-\frac{3}{2}
Whakahekea te hautanga \frac{-18}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
6t^{2}+t-12=6\left(t-\frac{4}{3}\right)\left(t-\left(-\frac{3}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{4}{3} mō te x_{1} me te -\frac{3}{2} mō te x_{2}.
6t^{2}+t-12=6\left(t-\frac{4}{3}\right)\left(t+\frac{3}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6t^{2}+t-12=6\times \frac{3t-4}{3}\left(t+\frac{3}{2}\right)
Tango \frac{4}{3} mai i t mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6t^{2}+t-12=6\times \frac{3t-4}{3}\times \frac{2t+3}{2}
Tāpiri \frac{3}{2} ki te t mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6t^{2}+t-12=6\times \frac{\left(3t-4\right)\left(2t+3\right)}{3\times 2}
Whakareatia \frac{3t-4}{3} ki te \frac{2t+3}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6t^{2}+t-12=6\times \frac{\left(3t-4\right)\left(2t+3\right)}{6}
Whakareatia 3 ki te 2.
6t^{2}+t-12=\left(3t-4\right)\left(2t+3\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.