Tauwehe
\left(3s-5\right)\left(2s+7\right)
Aromātai
\left(3s-5\right)\left(2s+7\right)
Tohaina
Kua tāruatia ki te papatopenga
a+b=11 ab=6\left(-35\right)=-210
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 6s^{2}+as+bs-35. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,210 -2,105 -3,70 -5,42 -6,35 -7,30 -10,21 -14,15
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -210.
-1+210=209 -2+105=103 -3+70=67 -5+42=37 -6+35=29 -7+30=23 -10+21=11 -14+15=1
Tātaihia te tapeke mō ia takirua.
a=-10 b=21
Ko te otinga te takirua ka hoatu i te tapeke 11.
\left(6s^{2}-10s\right)+\left(21s-35\right)
Tuhia anō te 6s^{2}+11s-35 hei \left(6s^{2}-10s\right)+\left(21s-35\right).
2s\left(3s-5\right)+7\left(3s-5\right)
Tauwehea te 2s i te tuatahi me te 7 i te rōpū tuarua.
\left(3s-5\right)\left(2s+7\right)
Whakatauwehea atu te kīanga pātahi 3s-5 mā te whakamahi i te āhuatanga tātai tohatoha.
6s^{2}+11s-35=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
s=\frac{-11±\sqrt{11^{2}-4\times 6\left(-35\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
s=\frac{-11±\sqrt{121-4\times 6\left(-35\right)}}{2\times 6}
Pūrua 11.
s=\frac{-11±\sqrt{121-24\left(-35\right)}}{2\times 6}
Whakareatia -4 ki te 6.
s=\frac{-11±\sqrt{121+840}}{2\times 6}
Whakareatia -24 ki te -35.
s=\frac{-11±\sqrt{961}}{2\times 6}
Tāpiri 121 ki te 840.
s=\frac{-11±31}{2\times 6}
Tuhia te pūtakerua o te 961.
s=\frac{-11±31}{12}
Whakareatia 2 ki te 6.
s=\frac{20}{12}
Nā, me whakaoti te whārite s=\frac{-11±31}{12} ina he tāpiri te ±. Tāpiri -11 ki te 31.
s=\frac{5}{3}
Whakahekea te hautanga \frac{20}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
s=-\frac{42}{12}
Nā, me whakaoti te whārite s=\frac{-11±31}{12} ina he tango te ±. Tango 31 mai i -11.
s=-\frac{7}{2}
Whakahekea te hautanga \frac{-42}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
6s^{2}+11s-35=6\left(s-\frac{5}{3}\right)\left(s-\left(-\frac{7}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te \frac{5}{3} mō te x_{1} me te -\frac{7}{2} mō te x_{2}.
6s^{2}+11s-35=6\left(s-\frac{5}{3}\right)\left(s+\frac{7}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6s^{2}+11s-35=6\times \frac{3s-5}{3}\left(s+\frac{7}{2}\right)
Tango \frac{5}{3} mai i s mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6s^{2}+11s-35=6\times \frac{3s-5}{3}\times \frac{2s+7}{2}
Tāpiri \frac{7}{2} ki te s mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6s^{2}+11s-35=6\times \frac{\left(3s-5\right)\left(2s+7\right)}{3\times 2}
Whakareatia \frac{3s-5}{3} ki te \frac{2s+7}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6s^{2}+11s-35=6\times \frac{\left(3s-5\right)\left(2s+7\right)}{6}
Whakareatia 3 ki te 2.
6s^{2}+11s-35=\left(3s-5\right)\left(2s+7\right)
Whakakorea atu te tauwehe pūnoa nui rawa 6 i roto i te 6 me te 6.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}