Whakaoti mō p
p=-\frac{1}{3}\approx -0.333333333
p = \frac{5}{2} = 2\frac{1}{2} = 2.5
Tohaina
Kua tāruatia ki te papatopenga
6p^{2}-5-13p=0
Tangohia te 13p mai i ngā taha e rua.
6p^{2}-13p-5=0
Hurinahatia te pūrau ki te āhua tānga ngahuru. Whakaraupapahia ngā kīanga tau mai i te pū teitei rawa ki te mea iti rawa.
a+b=-13 ab=6\left(-5\right)=-30
Hei whakaoti i te whārite, whakatauwehea te taha mauī mā te whakarōpū. Tuatahi, me tuhi anō te taha mauī hei 6p^{2}+ap+bp-5. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,-30 2,-15 3,-10 5,-6
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōraro te a+b, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -30.
1-30=-29 2-15=-13 3-10=-7 5-6=-1
Tātaihia te tapeke mō ia takirua.
a=-15 b=2
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(6p^{2}-15p\right)+\left(2p-5\right)
Tuhia anō te 6p^{2}-13p-5 hei \left(6p^{2}-15p\right)+\left(2p-5\right).
3p\left(2p-5\right)+2p-5
Whakatauwehea atu 3p i te 6p^{2}-15p.
\left(2p-5\right)\left(3p+1\right)
Whakatauwehea atu te kīanga pātahi 2p-5 mā te whakamahi i te āhuatanga tātai tohatoha.
p=\frac{5}{2} p=-\frac{1}{3}
Hei kimi otinga whārite, me whakaoti te 2p-5=0 me te 3p+1=0.
6p^{2}-5-13p=0
Tangohia te 13p mai i ngā taha e rua.
6p^{2}-13p-5=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\left(-5\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, -13 mō b, me -5 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-\left(-13\right)±\sqrt{169-4\times 6\left(-5\right)}}{2\times 6}
Pūrua -13.
p=\frac{-\left(-13\right)±\sqrt{169-24\left(-5\right)}}{2\times 6}
Whakareatia -4 ki te 6.
p=\frac{-\left(-13\right)±\sqrt{169+120}}{2\times 6}
Whakareatia -24 ki te -5.
p=\frac{-\left(-13\right)±\sqrt{289}}{2\times 6}
Tāpiri 169 ki te 120.
p=\frac{-\left(-13\right)±17}{2\times 6}
Tuhia te pūtakerua o te 289.
p=\frac{13±17}{2\times 6}
Ko te tauaro o -13 ko 13.
p=\frac{13±17}{12}
Whakareatia 2 ki te 6.
p=\frac{30}{12}
Nā, me whakaoti te whārite p=\frac{13±17}{12} ina he tāpiri te ±. Tāpiri 13 ki te 17.
p=\frac{5}{2}
Whakahekea te hautanga \frac{30}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
p=-\frac{4}{12}
Nā, me whakaoti te whārite p=\frac{13±17}{12} ina he tango te ±. Tango 17 mai i 13.
p=-\frac{1}{3}
Whakahekea te hautanga \frac{-4}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
p=\frac{5}{2} p=-\frac{1}{3}
Kua oti te whārite te whakatau.
6p^{2}-5-13p=0
Tangohia te 13p mai i ngā taha e rua.
6p^{2}-13p=5
Me tāpiri te 5 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
\frac{6p^{2}-13p}{6}=\frac{5}{6}
Whakawehea ngā taha e rua ki te 6.
p^{2}-\frac{13}{6}p=\frac{5}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
p^{2}-\frac{13}{6}p+\left(-\frac{13}{12}\right)^{2}=\frac{5}{6}+\left(-\frac{13}{12}\right)^{2}
Whakawehea te -\frac{13}{6}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te -\frac{13}{12}. Nā, tāpiria te pūrua o te -\frac{13}{12} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}-\frac{13}{6}p+\frac{169}{144}=\frac{5}{6}+\frac{169}{144}
Pūruatia -\frac{13}{12} mā te pūrua i te taurunga me te tauraro o te hautanga.
p^{2}-\frac{13}{6}p+\frac{169}{144}=\frac{289}{144}
Tāpiri \frac{5}{6} ki te \frac{169}{144} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(p-\frac{13}{12}\right)^{2}=\frac{289}{144}
Tauwehea p^{2}-\frac{13}{6}p+\frac{169}{144}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p-\frac{13}{12}\right)^{2}}=\sqrt{\frac{289}{144}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p-\frac{13}{12}=\frac{17}{12} p-\frac{13}{12}=-\frac{17}{12}
Whakarūnātia.
p=\frac{5}{2} p=-\frac{1}{3}
Me tāpiri \frac{13}{12} ki ngā taha e rua o te whārite.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}