Tīpoka ki ngā ihirangi matua
Whakaoti mō p
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

6p^{2}+9p-37=0
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
p=\frac{-9±\sqrt{9^{2}-4\times 6\left(-37\right)}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 9 mō b, me -37 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
p=\frac{-9±\sqrt{81-4\times 6\left(-37\right)}}{2\times 6}
Pūrua 9.
p=\frac{-9±\sqrt{81-24\left(-37\right)}}{2\times 6}
Whakareatia -4 ki te 6.
p=\frac{-9±\sqrt{81+888}}{2\times 6}
Whakareatia -24 ki te -37.
p=\frac{-9±\sqrt{969}}{2\times 6}
Tāpiri 81 ki te 888.
p=\frac{-9±\sqrt{969}}{12}
Whakareatia 2 ki te 6.
p=\frac{\sqrt{969}-9}{12}
Nā, me whakaoti te whārite p=\frac{-9±\sqrt{969}}{12} ina he tāpiri te ±. Tāpiri -9 ki te \sqrt{969}.
p=\frac{\sqrt{969}}{12}-\frac{3}{4}
Whakawehe -9+\sqrt{969} ki te 12.
p=\frac{-\sqrt{969}-9}{12}
Nā, me whakaoti te whārite p=\frac{-9±\sqrt{969}}{12} ina he tango te ±. Tango \sqrt{969} mai i -9.
p=-\frac{\sqrt{969}}{12}-\frac{3}{4}
Whakawehe -9-\sqrt{969} ki te 12.
p=\frac{\sqrt{969}}{12}-\frac{3}{4} p=-\frac{\sqrt{969}}{12}-\frac{3}{4}
Kua oti te whārite te whakatau.
6p^{2}+9p-37=0
Ko ngā whārite pūrua pēnei i tēnei nā ka taea te whakaoti mā te whakaoti i te pūrua. Hei whakaoti i te pūrua, ko te whārite me mātua tuhi ki te āhua x^{2}+bx=c.
6p^{2}+9p-37-\left(-37\right)=-\left(-37\right)
Me tāpiri 37 ki ngā taha e rua o te whārite.
6p^{2}+9p=-\left(-37\right)
Mā te tango i te -37 i a ia ake anō ka toe ko te 0.
6p^{2}+9p=37
Tango -37 mai i 0.
\frac{6p^{2}+9p}{6}=\frac{37}{6}
Whakawehea ngā taha e rua ki te 6.
p^{2}+\frac{9}{6}p=\frac{37}{6}
Mā te whakawehe ki te 6 ka wetekia te whakareanga ki te 6.
p^{2}+\frac{3}{2}p=\frac{37}{6}
Whakahekea te hautanga \frac{9}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 3.
p^{2}+\frac{3}{2}p+\left(\frac{3}{4}\right)^{2}=\frac{37}{6}+\left(\frac{3}{4}\right)^{2}
Whakawehea te \frac{3}{2}, te tau whakarea o te kīanga tau x, ki te 2 kia riro ai te \frac{3}{4}. Nā, tāpiria te pūrua o te \frac{3}{4} ki ngā taha e rua o te whārite. Mā konei e pūrua tika tonu ai te taha mauī o te whārite.
p^{2}+\frac{3}{2}p+\frac{9}{16}=\frac{37}{6}+\frac{9}{16}
Pūruatia \frac{3}{4} mā te pūrua i te taurunga me te tauraro o te hautanga.
p^{2}+\frac{3}{2}p+\frac{9}{16}=\frac{323}{48}
Tāpiri \frac{37}{6} ki te \frac{9}{16} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
\left(p+\frac{3}{4}\right)^{2}=\frac{323}{48}
Tauwehea p^{2}+\frac{3}{2}p+\frac{9}{16}. Ko te tikanga pūnoa, ina ko x^{2}+bx+c he pūrua tika pūrua tika pū, ka taea taua mea te tauwehea i ngā wā katoa hei \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(p+\frac{3}{4}\right)^{2}}=\sqrt{\frac{323}{48}}
Tuhia te pūtakerua o ngā taha e rua o te whārite.
p+\frac{3}{4}=\frac{\sqrt{969}}{12} p+\frac{3}{4}=-\frac{\sqrt{969}}{12}
Whakarūnātia.
p=\frac{\sqrt{969}}{12}-\frac{3}{4} p=-\frac{\sqrt{969}}{12}-\frac{3}{4}
Me tango \frac{3}{4} mai i ngā taha e rua o te whārite.