Whakaoti mō n
n=-\frac{5\sqrt{6}i}{3}\approx -0-4.082482905i
n=\frac{5\sqrt{6}i}{3}\approx 4.082482905i
Tohaina
Kua tāruatia ki te papatopenga
6n^{2}=-101+1
Me tāpiri te 1 ki ngā taha e rua.
6n^{2}=-100
Tāpirihia te -101 ki te 1, ka -100.
n^{2}=\frac{-100}{6}
Whakawehea ngā taha e rua ki te 6.
n^{2}=-\frac{50}{3}
Whakahekea te hautanga \frac{-100}{6} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 2.
n=\frac{5\sqrt{6}i}{3} n=-\frac{5\sqrt{6}i}{3}
Kua oti te whārite te whakatau.
6n^{2}-1+101=0
Me tāpiri te 101 ki ngā taha e rua.
6n^{2}+100=0
Tāpirihia te -1 ki te 101, ka 100.
n=\frac{0±\sqrt{0^{2}-4\times 6\times 100}}{2\times 6}
Kei te āhua arowhānui tēnei whārite: ax^{2}+bx+c=0. Me whakakapi 6 mō a, 0 mō b, me 100 mō c i te tikanga tātai pūrua, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{0±\sqrt{-4\times 6\times 100}}{2\times 6}
Pūrua 0.
n=\frac{0±\sqrt{-24\times 100}}{2\times 6}
Whakareatia -4 ki te 6.
n=\frac{0±\sqrt{-2400}}{2\times 6}
Whakareatia -24 ki te 100.
n=\frac{0±20\sqrt{6}i}{2\times 6}
Tuhia te pūtakerua o te -2400.
n=\frac{0±20\sqrt{6}i}{12}
Whakareatia 2 ki te 6.
n=\frac{5\sqrt{6}i}{3}
Nā, me whakaoti te whārite n=\frac{0±20\sqrt{6}i}{12} ina he tāpiri te ±.
n=-\frac{5\sqrt{6}i}{3}
Nā, me whakaoti te whārite n=\frac{0±20\sqrt{6}i}{12} ina he tango te ±.
n=\frac{5\sqrt{6}i}{3} n=-\frac{5\sqrt{6}i}{3}
Kua oti te whārite te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}