Aromātai
\frac{35x^{4}+11x^{3}+51x^{2}-3x+6n+18}{5x^{2}+3x+6}
Kimi Pārōnaki e ai ki x
\frac{2\left(175x^{5}+185x^{4}+453x^{3}+183x^{2}-30nx+216x-9n-36\right)}{\left(5x^{2}+3x+6\right)^{2}}
Graph
Pātaitai
Algebra
5 raruraru e ōrite ana ki:
6 n : ( 5 x ^ { 2 } + 3 x + 6 ) + ( 7 x ^ { 2 } - 2 x + 3 ) =
Tohaina
Kua tāruatia ki te papatopenga
\frac{6n}{5x^{2}+3x+6}+\frac{\left(7x^{2}-2x+3\right)\left(5x^{2}+3x+6\right)}{5x^{2}+3x+6}
Hei tāpiri, hei tango kīanga rānei, me whakaroha ērā kia rite ā rātou tauraro. Whakareatia 7x^{2}-2x+3 ki te \frac{5x^{2}+3x+6}{5x^{2}+3x+6}.
\frac{6n+\left(7x^{2}-2x+3\right)\left(5x^{2}+3x+6\right)}{5x^{2}+3x+6}
Tā te mea he rite te tauraro o \frac{6n}{5x^{2}+3x+6} me \frac{\left(7x^{2}-2x+3\right)\left(5x^{2}+3x+6\right)}{5x^{2}+3x+6}, me tāpiri rāua mā te tāpiri i ō raua taurunga.
\frac{6n+35x^{4}+21x^{3}+42x^{2}-10x^{3}-6x^{2}-12x+15x^{2}+9x+18}{5x^{2}+3x+6}
Mahia ngā whakarea i roto o 6n+\left(7x^{2}-2x+3\right)\left(5x^{2}+3x+6\right).
\frac{6n+35x^{4}+11x^{3}+51x^{2}-3x+18}{5x^{2}+3x+6}
Whakakotahitia ngā kupu rite i 6n+35x^{4}+21x^{3}+42x^{2}-10x^{3}-6x^{2}-12x+15x^{2}+9x+18.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}