Aromātai
\left(5m-4\right)\left(m+1\right)
Tauwehe
\left(5m-4\right)\left(m+1\right)
Tohaina
Kua tāruatia ki te papatopenga
5m^{2}-3m+2-\left(-4m\right)-6
Pahekotia te 6m^{2} me -m^{2}, ka 5m^{2}.
5m^{2}-3m+2+4m-6
Ko te tauaro o -4m ko 4m.
5m^{2}+m+2-6
Pahekotia te -3m me 4m, ka m.
5m^{2}+m-4
Tangohia te 6 i te 2, ka -4.
5m^{2}+m-4
Whakarea ka paheko i ngā kīanga tau ōrite.
a+b=1 ab=5\left(-4\right)=-20
Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 5m^{2}+am+bm-4. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,20 -2,10 -4,5
I te mea kua tōraro te ab, he tauaro ngā tohu o a me b. I te mea kua tōrunga te a+b, he nui ake te uara pū o te tau tōrunga i tō te tōraro. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -20.
-1+20=19 -2+10=8 -4+5=1
Tātaihia te tapeke mō ia takirua.
a=-4 b=5
Ko te otinga te takirua ka hoatu i te tapeke 1.
\left(5m^{2}-4m\right)+\left(5m-4\right)
Tuhia anō te 5m^{2}+m-4 hei \left(5m^{2}-4m\right)+\left(5m-4\right).
m\left(5m-4\right)+5m-4
Whakatauwehea atu m i te 5m^{2}-4m.
\left(5m-4\right)\left(m+1\right)
Whakatauwehea atu te kīanga pātahi 5m-4 mā te whakamahi i te āhuatanga tātai tohatoha.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}