Tauwehe
6\left(m+2\right)\left(m+6\right)
Aromātai
6\left(m+2\right)\left(m+6\right)
Tohaina
Kua tāruatia ki te papatopenga
6\left(m^{2}+8m+12\right)
Tauwehea te 6.
a+b=8 ab=1\times 12=12
Whakaarohia te m^{2}+8m+12. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei m^{2}+am+bm+12. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
1,12 2,6 3,4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōrunga te a+b, he tōrunga hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
1+12=13 2+6=8 3+4=7
Tātaihia te tapeke mō ia takirua.
a=2 b=6
Ko te otinga te takirua ka hoatu i te tapeke 8.
\left(m^{2}+2m\right)+\left(6m+12\right)
Tuhia anō te m^{2}+8m+12 hei \left(m^{2}+2m\right)+\left(6m+12\right).
m\left(m+2\right)+6\left(m+2\right)
Tauwehea te m i te tuatahi me te 6 i te rōpū tuarua.
\left(m+2\right)\left(m+6\right)
Whakatauwehea atu te kīanga pātahi m+2 mā te whakamahi i te āhuatanga tātai tohatoha.
6\left(m+2\right)\left(m+6\right)
Me tuhi anō te kīanga whakatauwehe katoa.
6m^{2}+48m+72=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
m=\frac{-48±\sqrt{48^{2}-4\times 6\times 72}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
m=\frac{-48±\sqrt{2304-4\times 6\times 72}}{2\times 6}
Pūrua 48.
m=\frac{-48±\sqrt{2304-24\times 72}}{2\times 6}
Whakareatia -4 ki te 6.
m=\frac{-48±\sqrt{2304-1728}}{2\times 6}
Whakareatia -24 ki te 72.
m=\frac{-48±\sqrt{576}}{2\times 6}
Tāpiri 2304 ki te -1728.
m=\frac{-48±24}{2\times 6}
Tuhia te pūtakerua o te 576.
m=\frac{-48±24}{12}
Whakareatia 2 ki te 6.
m=-\frac{24}{12}
Nā, me whakaoti te whārite m=\frac{-48±24}{12} ina he tāpiri te ±. Tāpiri -48 ki te 24.
m=-2
Whakawehe -24 ki te 12.
m=-\frac{72}{12}
Nā, me whakaoti te whārite m=\frac{-48±24}{12} ina he tango te ±. Tango 24 mai i -48.
m=-6
Whakawehe -72 ki te 12.
6m^{2}+48m+72=6\left(m-\left(-2\right)\right)\left(m-\left(-6\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te -2 mō te x_{1} me te -6 mō te x_{2}.
6m^{2}+48m+72=6\left(m+2\right)\left(m+6\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}