Tauwehe
3\left(g-6\right)\left(2g-1\right)
Aromātai
3\left(g-6\right)\left(2g-1\right)
Tohaina
Kua tāruatia ki te papatopenga
3\left(2g^{2}-13g+6\right)
Tauwehea te 3.
a+b=-13 ab=2\times 6=12
Whakaarohia te 2g^{2}-13g+6. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2g^{2}+ag+bg+6. Hei kimi a me b, whakaritea tētahi pūnaha kia whakaoti.
-1,-12 -2,-6 -3,-4
I te mea kua tōrunga te ab, he ōrite te tohu o a me b. I te mea kua tōraro te a+b, he tōraro hoki a a me b. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua 12.
-1-12=-13 -2-6=-8 -3-4=-7
Tātaihia te tapeke mō ia takirua.
a=-12 b=-1
Ko te otinga te takirua ka hoatu i te tapeke -13.
\left(2g^{2}-12g\right)+\left(-g+6\right)
Tuhia anō te 2g^{2}-13g+6 hei \left(2g^{2}-12g\right)+\left(-g+6\right).
2g\left(g-6\right)-\left(g-6\right)
Tauwehea te 2g i te tuatahi me te -1 i te rōpū tuarua.
\left(g-6\right)\left(2g-1\right)
Whakatauwehea atu te kīanga pātahi g-6 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(g-6\right)\left(2g-1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
6g^{2}-39g+18=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
g=\frac{-\left(-39\right)±\sqrt{\left(-39\right)^{2}-4\times 6\times 18}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
g=\frac{-\left(-39\right)±\sqrt{1521-4\times 6\times 18}}{2\times 6}
Pūrua -39.
g=\frac{-\left(-39\right)±\sqrt{1521-24\times 18}}{2\times 6}
Whakareatia -4 ki te 6.
g=\frac{-\left(-39\right)±\sqrt{1521-432}}{2\times 6}
Whakareatia -24 ki te 18.
g=\frac{-\left(-39\right)±\sqrt{1089}}{2\times 6}
Tāpiri 1521 ki te -432.
g=\frac{-\left(-39\right)±33}{2\times 6}
Tuhia te pūtakerua o te 1089.
g=\frac{39±33}{2\times 6}
Ko te tauaro o -39 ko 39.
g=\frac{39±33}{12}
Whakareatia 2 ki te 6.
g=\frac{72}{12}
Nā, me whakaoti te whārite g=\frac{39±33}{12} ina he tāpiri te ±. Tāpiri 39 ki te 33.
g=6
Whakawehe 72 ki te 12.
g=\frac{6}{12}
Nā, me whakaoti te whārite g=\frac{39±33}{12} ina he tango te ±. Tango 33 mai i 39.
g=\frac{1}{2}
Whakahekea te hautanga \frac{6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
6g^{2}-39g+18=6\left(g-6\right)\left(g-\frac{1}{2}\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 6 mō te x_{1} me te \frac{1}{2} mō te x_{2}.
6g^{2}-39g+18=6\left(g-6\right)\times \frac{2g-1}{2}
Tango \frac{1}{2} mai i g mā te kimi i te tauraro pātahi me te tango i ngā taurunga, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6g^{2}-39g+18=3\left(g-6\right)\left(2g-1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 6 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}