Tīpoka ki ngā ihirangi matua
Tauwehe
Tick mark Image
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

2\left(3c^{2}+2c\right)
Tauwehea te 2.
c\left(3c+2\right)
Whakaarohia te 3c^{2}+2c. Tauwehea te c.
2c\left(3c+2\right)
Me tuhi anō te kīanga whakatauwehe katoa.
6c^{2}+4c=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
c=\frac{-4±\sqrt{4^{2}}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
c=\frac{-4±4}{2\times 6}
Tuhia te pūtakerua o te 4^{2}.
c=\frac{-4±4}{12}
Whakareatia 2 ki te 6.
c=\frac{0}{12}
Nā, me whakaoti te whārite c=\frac{-4±4}{12} ina he tāpiri te ±. Tāpiri -4 ki te 4.
c=0
Whakawehe 0 ki te 12.
c=-\frac{8}{12}
Nā, me whakaoti te whārite c=\frac{-4±4}{12} ina he tango te ±. Tango 4 mai i -4.
c=-\frac{2}{3}
Whakahekea te hautanga \frac{-8}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 4.
6c^{2}+4c=6c\left(c-\left(-\frac{2}{3}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 0 mō te x_{1} me te -\frac{2}{3} mō te x_{2}.
6c^{2}+4c=6c\left(c+\frac{2}{3}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6c^{2}+4c=6c\times \frac{3c+2}{3}
Tāpiri \frac{2}{3} ki te c mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6c^{2}+4c=2c\left(3c+2\right)
Whakakorea atu te tauwehe pūnoa nui rawa 3 i roto i te 6 me te 3.