Tauwehe
3\left(b-5\right)\left(2b+1\right)
Aromātai
3\left(b-5\right)\left(2b+1\right)
Tohaina
Kua tāruatia ki te papatopenga
3\left(2b^{2}-9b-5\right)
Tauwehea te 3.
p+q=-9 pq=2\left(-5\right)=-10
Whakaarohia te 2b^{2}-9b-5. Whakatauwehea te kīanga mā te whakarōpū. Tuatahi, me tuhi anō te kīanga hei 2b^{2}+pb+qb-5. Hei kimi p me q, whakaritea tētahi pūnaha kia whakaoti.
1,-10 2,-5
I te mea kua tōraro te pq, he tauaro ngā tohu o p me q. I te mea kua tōraro te p+q, he nui ake te uara pū o te tau tōraro i tō te tōrunga. Whakarārangitia ngā tau tōpū takirua pērā katoa ka hoatu i te hua -10.
1-10=-9 2-5=-3
Tātaihia te tapeke mō ia takirua.
p=-10 q=1
Ko te otinga te takirua ka hoatu i te tapeke -9.
\left(2b^{2}-10b\right)+\left(b-5\right)
Tuhia anō te 2b^{2}-9b-5 hei \left(2b^{2}-10b\right)+\left(b-5\right).
2b\left(b-5\right)+b-5
Whakatauwehea atu 2b i te 2b^{2}-10b.
\left(b-5\right)\left(2b+1\right)
Whakatauwehea atu te kīanga pātahi b-5 mā te whakamahi i te āhuatanga tātai tohatoha.
3\left(b-5\right)\left(2b+1\right)
Me tuhi anō te kīanga whakatauwehe katoa.
6b^{2}-27b-15=0
Ka taea te huamaha pūrua te tauwehe mā te whakamahi i te huringa ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), ina ko x_{1} me x_{2} ngā otinga o te whārite pūrua ax^{2}+bx+c=0.
b=\frac{-\left(-27\right)±\sqrt{\left(-27\right)^{2}-4\times 6\left(-15\right)}}{2\times 6}
Ko ngā whārite katoa o te āhua ax^{2}+bx+c=0 ka taea te whakaoti mā te whakamahi i te tikanga tātai pūrua: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. E rua ngā otinga ka puta i te tikanga tātai pūrua, ko tētahi ina he tāpiri a ±, ā, ko tētahi ina he tango.
b=\frac{-\left(-27\right)±\sqrt{729-4\times 6\left(-15\right)}}{2\times 6}
Pūrua -27.
b=\frac{-\left(-27\right)±\sqrt{729-24\left(-15\right)}}{2\times 6}
Whakareatia -4 ki te 6.
b=\frac{-\left(-27\right)±\sqrt{729+360}}{2\times 6}
Whakareatia -24 ki te -15.
b=\frac{-\left(-27\right)±\sqrt{1089}}{2\times 6}
Tāpiri 729 ki te 360.
b=\frac{-\left(-27\right)±33}{2\times 6}
Tuhia te pūtakerua o te 1089.
b=\frac{27±33}{2\times 6}
Ko te tauaro o -27 ko 27.
b=\frac{27±33}{12}
Whakareatia 2 ki te 6.
b=\frac{60}{12}
Nā, me whakaoti te whārite b=\frac{27±33}{12} ina he tāpiri te ±. Tāpiri 27 ki te 33.
b=5
Whakawehe 60 ki te 12.
b=-\frac{6}{12}
Nā, me whakaoti te whārite b=\frac{27±33}{12} ina he tango te ±. Tango 33 mai i 27.
b=-\frac{1}{2}
Whakahekea te hautanga \frac{-6}{12} ki ōna wāhi pāpaku rawa mā te tango me te whakakore i te 6.
6b^{2}-27b-15=6\left(b-5\right)\left(b-\left(-\frac{1}{2}\right)\right)
Tauwehea te kīanga taketake mā te whakamahi i te ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Me whakakapi te 5 mō te x_{1} me te -\frac{1}{2} mō te x_{2}.
6b^{2}-27b-15=6\left(b-5\right)\left(b+\frac{1}{2}\right)
Whakamāmātia ngā kīanga katoa o te āhua p-\left(-q\right) ki te p+q.
6b^{2}-27b-15=6\left(b-5\right)\times \frac{2b+1}{2}
Tāpiri \frac{1}{2} ki te b mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
6b^{2}-27b-15=3\left(b-5\right)\left(2b+1\right)
Whakakorea atu te tauwehe pūnoa nui rawa 2 i roto i te 6 me te 2.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}